
1

1	
 © Copyright	
 2010	
 	
 	
 Dieter	
 Fensel	
 and	
 Federico	
 Facca	

Semantic Web

Resource Description
Framework (RDF)

2	

Where are we?

Title

1 Introduction

2 Semantic Web Architecture

3 Resource Description Framework (RDF)

4 Web of data

5 Generating Semantic Annotations

6 Storage and Querying

7 Web Ontology Language (OWL)

8 Rule Interchange Format (RIF)

9 Reasoning on the Web

10 Ontologies

11 Social Semantic Web

12 Semantic Web Services

13 Tools

14 Applications

2

3	

Agenda

1.  Introduction and Motivation
2.  Technical Solution

1.  RDF
2.  RDF Schema
3.  RDF(S) Semantics
4.  RDF(S) Serialization
5.  Tools

3.  Illustration by a large example
4.  Extensions
5.  Summary
6.  References

4	

Semantic Web Stack

Adapted from http://en.wikipedia.org/wiki/Semantic_W
eb_Stack

3

5	

INTRODUCTION AND
MOTIVATION

6	

Motivating Example 1

•  Dieter Fensel is teaching the Semantic Web course.

Examples adapted from
Grigoris Antoniou and Frank van Harmelen: A Semantic Web Primer, MIT Press 2004

4

7	

Motivating Example 1

•  Dieter Fensel is teaching the Semantic Web course.

<course name=“Semantic Web">
 <lecturer>Dieter Fensel</lecturer>

</course>

What’s the problem you can spot in this representation?

Examples adapted from
Grigoris Antoniou and Frank van Harmelen: A Semantic Web Primer, MIT Press 2004

8	

Motivating Example 1

•  Dieter Fensel is teaching the Semantic Web course.
<course name=“Semantic Web">

 <lecturer>Dieter Fensel</lecturer>
</course>

<lecturer name=“Dieter Fensel">

 <teaches>Semantic Web</teaches>
</lecturer>

 The first two formalizations include essentially an opposite nesting
although they represent the same information.
 There is no standard way of assigning meaning to tag nesting.

Examples adapted from

Grigoris Antoniou and Frank van Harmelen: A Semantic Web Primer, MIT Press 2004

5

9	

Motivating Example 1

•  Dieter Fensel is teaching the Semantic Web course.

<course name=“Semantic Web">
 <lecturer>Dieter Fensel</lecturer>

</course>

<lecturer name=“Dieter Fensel">

 <teaches>Semantic Web</teaches>
</lecturer>

<teachingOffering>

 <lecturer>Dieter Fensel</lecturer>
 <course>Semantic Web</course>

</teachingOffering>

Examples adapted from
Grigoris Antoniou and Frank van Harmelen: A Semantic Web Primer, MIT Press 2004

10	

Motivating Example 2

•  A lecturer is a subclass of an academic staff member.

 This sentence means that all lecturers are also academic staff
members. It is important to understand that there is an intended
meaning associated with “is a subclass of”. It is not up to the
application to interpret this term; its intended meaning must be
respected by all RDF processing software.

Examples adapted from
Grigoris Antoniou and Frank van Harmelen: A Semantic Web Primer, MIT Press 2004

6

11	

Motivating Example 2

•  A lecturer is a subclass of an academic staff member.

<academicStaffMember>Dieter Fensel</academicStaffMember>

<professor>Dieter Fensel</professor>

<course name=“Semantic Web">

 <isTaughtBy>Federico M. Facca</isTaughtBy>
</course>

Examples adapted from
Grigoris Antoniou and Frank van Harmelen: A Semantic Web Primer, MIT Press 2004

12	

Motivating Example 2

•  Retrieve all the members of the academic staff.

 An example Xpath query to achieve the second bullet task over
presented XML is: //academicStaffMember

Examples adapted from
Grigoris Antoniou and Frank van Harmelen: A Semantic Web Primer, MIT Press 2004

7

13	

Motivating Example 2

•  The result is only Dieter Fensel.

 Correct from the XML viewpoint, But semantically unsatisfactory.
Human readers would have also included Federico M. Facca.

 This kind of information makes use of the semantic model of the
particular domain and cannot be represented in XML or in RDF but
is typical of knowledge written in RDF Schema.

 RDFS makes semantic information machine accessible

Examples adapted from
Grigoris Antoniou and Frank van Harmelen: A Semantic Web Primer, MIT Press 2004

14	

What Are RDF and RDF Schema?

•  RDF
–  Resource Description Framework
–  Data model

•  Syntax (XML)
–  Domain independent

•  Vocabulary is defined by RDF Schema

•  RDF Schema
–  RDF Vocabulary Description Language
–  Captures the semantic model of a domain

8

15	

TECHNICAL SOLUTION
RDF and RDF Schema

16	

THE RESOURCE
DESCRIPTION FRAMEWORK

The power of triple representation joint with XML serialization

Most of the examples in the upcoming slides are taken from: http://www.w3.org/TR/rdf-primer/

9

17	

RDF Basics

•  RDF is a language that enable to describe making statements on
resources
–  John is father of Bill

•  Statement (or triple) as a logical formula P(x, y), where the
binary predicate P relates the object x to the object y

•  Triple data model:
 <subject, predicate, object>

–  Subject: Resource or blank node
–  Predicate: Property
–  Object: Resource (or collection of resources), literal or blank node

•  Example:
 <ex:john, ex:father-of, ex:bill>

•  RDF offers only binary predicates (properties)

18	

Resources

•  A resource may be:
–  Web page (e.g. http://www.w3.org)

–  A person (e.g. http://www.fensel.com)

–  A book (e.g. urn:isbn:0-345-33971-1)
–  Anything denoted with a URI!

•  A URI is an identifier and not a location on the Web

•  RDF allows making statements about resources:
–  http://www.w3.org has the format text/html

–  http://www.fensel.com has first name Dieter

–  urn:isbn:0-345-33971-1 has author Tolkien

10

19	

URI, URN, URL

•  A Uniform Resource Identifier (URI) is a string of characters used to identify
a name or a resource on the Internet

•  A URI can be a URL or a URN
•  A Uniform Resource Name (URN) defines an item's identity

–  the URN urn:isbn:0-395-36341-1 is a URI that specifies the identifier system, i.e.
International Standard Book Number (ISBN), as well as the unique reference within that
system and allows one to talk about a book, but doesn't suggest where and how to obtain an
actual copy of it

•  A Uniform Resource Locator (URL) provides a method for finding it
–  the URL http://www.sti-innsbruck.at/ identifies a resource (STI's home page) and implies that

a representation of that resource (such as the home page's current HTML code, as encoded
characters) is obtainable via HTTP from a network host named www.sti-innsbruck.at

20	

Literals

•  Plain literals
–  E.g. ”any text”
–  Optional language tag, e.g. ”Hello, how are you?”@en-GB

•  Typed literals
–  E.g. "hello"^^xsd:string, "1"^^xsd:integer
–  Recommended datatypes:

•  XML Schema datatypes

•  Only as object of a triple, e.g.:
〈<http://example.org/#john>,

 <http://example.org/#hasName>,
 ”John Smith”ˆˆxsd:string〉

11

21	

Datatypes

•  One pre-defined datatype: rdf:XMLLiteral
–  Used for embedding XML in RDF

•  Recommended datatypes are XML Schema datatypes, e.g.:
–  xsd:string
–  xsd:integer
–  xsd:float
–  xsd:anyURI
–  xsd:boolean

22	

Blank Nodes I

•  Blank nodes are nodes without a URI
–  Unnamed resources
–  More complex constructs

•  Representation of blank nodes is syntax-dependent
–  Blank node identifier

•  For example:
 〈<#john>, <#hasName>, _:johnsname〉
 〈_:johnsname, <#firstName>, ”John”ˆˆxsd:string〉
 〈_:johnsname, <#lastName>, ”Smith”ˆˆxsd:string〉

12

23	

Blank Nodes II

•  Representation of complex data
 A blank node can be used to indirectly attach to a resource a
consistent set of properties which together represent a
complex data

•  Anonymous classes in OWL
 The ontology language OWL uses blank nodes to represent
anonymous classes such as unions or intersections of
classes, or classes called restrictions, defined by a constraint
on a property

24	

RDF Containers

“The lecture is attended by John, Mary and Chris”

Bag

“[RDF-Concepts] is edited by Graham and Jeremy
(in that order)”

Seq

“The source code for the application may be found at
 ftp1.example.org,
 ftp2.example.org,
 ftp3.example.org”

Alt

•  Grouping property values:

13

25	

RDF Containers 2

•  Three types of containers:
–  rdf:Bag - unordered set of items
–  rdf:Seq - ordered set of items
–  rdf:Alt - set of alternatives

•  Every container has a triple declaring the rdf:type

•  Items in the container are denoted with
–  rdf:_1, rdf:_2, . . . ,rdf:_n

•  Limitations:
–  Semantics of the container is up to the application
–  What about closed sets?

•  How do we know whether Graham and Jeremy are the only
editors of [RDF-Concepts]?

26	

RDF Containers 2

•  Three types of containers:
–  rdf:Bag - unordered set of items
–  rdf:Seq - ordered set of items
–  rdf:Alt - set of alternatives

•  Every container has a triple declaring the rdf:type

•  Items in the container are denoted with
–  rdf:_1, rdf:_2, . . . ,rdf:_n

•  Limitations:
–  Semantics of the container is up to the application
–  What about closed sets?

•  How do we know whether Graham and Jeremy are the only
editors of [RDF-Concepts]?

14

27	

RDF Triple Graph Representation

•  The triple data model can be represented
 as a graph

•  Such graph is called in the Artificial
Intelligence community a semantic net

•  Labeled, directed graphs
–  Nodes: resources, literals
–  Labels: properties
–  Edges: statements

28	

RDF: a Direct Connected Graph based Model

•  Different interconnected triples lead to a more complex graphic model
•  Basically a RDF document is a direct connect graph

–  http://en.wikipedia.org/wiki/Connectivity_%28graph_theory%29

15

29	

RDF Containers Graph Representation: Bag

“The lecture is attended by John, Mary and Chris”

30	

RDF Containers Graph Representation: Seq

“[RDF-Concepts] is edited by Graham and Jeremy
(in that order)”

16

31	

RDF Containers Graph Representation: Alt

“The source code for the application may be found at
 ftp1.example.org, ftp2.example.org, ftp3.example.org”

32	

RDF Collections

“[RDF-Concepts] is edited by Graham and Jeremy
(in that order) and nobody else”

RDF provides support for describing groups containing only the
specified members, in the form of RDF collections.

17

33	

Reification I

•  Reification: statements about statements

Mary claims that John’s name is “John Smith”.

〈<#myStatement>, rdf:type, rdf:Statement〉

〈<#myStatement>, rdf:subject, <#john>〉
〈<#myStatement>, rdf:predicate, <#hasName>〉
〈<#myStatement>, rdf:object, ”John Smith”〉

 This kind of statement can be used to describe belief or trust in other
statements, which is important in some kinds of applications

 Necessary because there are only triples in RDF: we cannot add an
identifier directly to a triple (then it would be a quadruple)

34	

Reification II

•  Reification: statements about statements

Mary claims that John’s name is “John Smith”.

〈<#myStatement>, rdf:type, rdf:Statement〉

〈<#myStatement>, rdf:subject, <#john>〉
〈<#myStatement>, rdf:predicate, <#hasName>〉
〈<#myStatement>, rdf:object, ”John Smith”〉

 ô
〈<#john>, <#hasName>, ”John Smith”〉

In such a way we attached a label to the statement.

18

35	

Reification III

•  Reification: statements about statements

Mary claims that John’s name is “John Smith”.

〈<#myStatement>, rdf:type, rdf:Statement〉

〈<#myStatement>, rdf:subject, <#john>〉
〈<#myStatement>, rdf:predicate, <#hasName>〉
〈<#myStatement>, rdf:object, ”John Smith”〉

〈<#mary>, <#claims>, <#myStatement>〉

 RDF uses only binary properties. This restriction seems quite
serious because often we use predicates with more than two
arguments. Luckily, such predicates can be simulated by a number
of binary predicates.

36	

RDF Vocabulary

•  RDF defines a number of resources and properties
•  We have already seen: rdf:XMLLiteral, rdf:type, . . .
•  RDF vocabulary is defined in the namespace:

 http://www.w3.org/1999/02/22-rdf-syntax-ns#

•  Classes:
–  rdf:Property, rdf:Statement, rdf:XMLLiteral
–  rdf:Seq, rdf:Bag, rdf:Alt, rdf:List

•  Properties:
–  rdf:type, rdf:subject, rdf:predicate, rdf:object,
–  rdf:first, rdf:rest, rdf:_n
–  rdf:value

•  Resources:
–  rdf:nil

19

37	

RDF Vocabulary

•  Typing using rdf:type:
 <A, rdf:type, B>
 “A belongs to class B”

•  All properties belong to class rdf:Property:
 <P, rdf:type, rdf:Property>
 “P is a property”

 <rdf:type, rdf:type, rdf:Property>
 “rdf:type is a property”

38	

THE RDF SCHEMA (RDFS)
How to represent the semantics of data models

20

39	

RDF Vocabulary Description Language 1

•  Types in RDF:
<#john, rdf:type, #Student>

•  What is a “#Student”?

•  RFD is not defining a vocabulary about the statements, but
only to express statements

•  We know that “#Student” identifies a category (a concept or a
class), but this is only implicitly defined in RDF

40	

RDF Vocabulary Description Language 2

•  We need a language for defining RDF types:
–  Define classes:

•  “#Student is a class”
–  Relationships between classes:

•  “#Student is a sub-class of #Person”
–  Properties of classes:

•  “#Person has a property hasName”

•  RDF Schema is such a language

21

41	

RDF Vocabulary Description Language 3

•  Classes:
<#Student, rdf:type, #rdfs:Class>

•  Class hierarchies:
<#Student, rdfs:subClassOf, #Person>

•  Properties:
<#hasName, rdf:type, rdf:Property>

•  Property hierarchies:
<#hasMother, rdfs:subPropertyOf, #hasParent>

•  Associating properties with classes (a):
–  “The property #hasName only applies to #Person”
 <#hasName, rdfs:domain, #Person>

•  Associating properties with classes (b):

–  “The type of the property #hasName is #xsd:string”
 <#hasName, rdfs:range, xsd:string>

42	

RDFS Vocabulary

RDFS Classes
–  rdfs:Resource
–  rdfs:Class
–  rdfs:Literal
–  rdfs:Datatype
–  rdfs:Container
–  rdfs:ContainerMembershipProperty

RDFS Properties
–  rdfs:domain
–  rdfs:range
–  rdfs:subPropertyOf
–  rdfs:subClassOf
–  rdfs:member
–  rdfs:seeAlso
–  rdfs:isDefinedBy
–  rdfs:comment
–  rdfs:label

•  RDFS Extends the RDF Vocabulary
•  RDFS vocabulary is defined in the namespace:

 http://www.w3.org/2000/01/rdf-schema#

22

43	

RDFS Principles

•  Resource
–  All resources are implicitly instances of rdfs:Resource

•  Class
–  Describe sets of resources
–  Classes are resources themselves - e.g. Webpages, people, document types

•  Class hierarchy can be defined through rdfs:subClassOf
•  Every class is a member of rdfs:Class

•  Property
–  Subset of RDFS Resources that are properties

•  Domain: class associated with property: rdfs:domain
•  Range: type of the property values: rdfs:range
•  Property hierarchy defined through: rdfs:subPropertyOf

44	

RDFS Example

ex:Faculty-
Staff

23

45	

RDFS Vocabulary Example

46	

RDFS Metadata Properties

•  Metadata is “data about data”
•  Any meta-data can be attached to a resource, using:

–  rdfs:comment
•  Human-readable description of the resource, e.g.

–  〈<ex:Person>, rdfs:comment, ”A person is any human being”〉

–  rdfs:label
•  Human-readable version of the resource name, e.g.

–  〈<ex:Person>, rdfs:label, ”Human being”〉

–  rdfs:seeAlso
•  Indicate additional information about the resource, e.g.

–  〈<ex:Person>, rdfs:seeAlso, <http://xmlns.com/wordnet/1.6/Human>〉

–  rdfs:isDefinedBy
•  A special kind of rdfs:seeAlso, e.g.

–  〈<ex:Person>,rdfs:isDefinedBy,<http://xmlns.com/wordnet/1.6/Human>〉

24

47	

RDF(S) SEMANTICS

48	

Semantics

•  RDF(S) vocabulary has built-in “meaning”

•  RDF(S) Semantics
–  Makes meaning explicit
–  Defines what follows from an RDF graph

•  Semantic notions
–  Subgraph
–  Instance
–  Entailment

25

49	

Subgraph

•  E is a subgraph of S if and only if E predicates are a subset of S
predicates

–  〈<#john>, <#hasName>, _:johnsname〉
–  〈<_:johnsname, <#firstName>, ”John”ˆˆxsd:string〉
–  〈<_:johnsname, <#lastName>, ”Smith”ˆˆxsd:string〉

•  Subgraphs:

–  〈<#john>,<#hasName>, :johnsname〉
–  〈_:johnsname, <#firstName>, ”John”ˆˆxsd:string〉

–  〈_:johnsname, <#firstName>, ”John”ˆˆxsd:string〉
–  〈_:johnsname, <#lastName>, ”Smith”ˆˆxsd:string〉

–  〈<#john>, <#hasName>, _:johnsname〉

50	

Instance

•  S’ is an instance of S if and only if some blank nodes in S are replaced with blank nodes,
literals or URIs

–  〈<#john>, <#hasName>, _:johnsname〉
–  〈_:johnsname, <#firstName>, ”John”ˆˆxsd:string〉
–  〈_:johnsname, <#lastName>, ”Smith”ˆˆxsd:string〉

•  Instances:
–  〈<#john>, <#hasName>, <#abc>〉
–  〈<#abc>, <#firstName>, ”John”ˆˆxsd:string〉
–  〈<#abc>, <#lastName>, ”Smith”ˆˆxsd:string〉

–  〈<#john>, <#hasName>, _:X〉
–  〈_:X, <#firstName>, ”John”ˆˆxsd:string〉
–  〈_:X, <#lastName>, ”Smith”ˆˆxsd:string〉

–  〈<#john>, <#hasName>, _:johnsname〉
–  〈_:johnsname, <#firstName>, ”John”ˆˆxsd:string〉
–  〈_:johnsname, <#lastName>, ”Smith”ˆˆxsd:string〉

•  Every graph is an instance of itself!

26

51	

Entailment

•  Entailment or logical implication is a relation between sentences of a
formal language

•  S entails E if E logically follows from S

–  Written: S |= E

•  A graph entails all it subgraphs
–  If S’ is a subgraph of S: S |= S’

•  All instances of a graph S entail S
–  If S’’ is an instance of S: S”|= S

52	

RDFS Entailment

27

53	

RDFS Entailment

54	

RDFS Entailment

28

55	

Entailment Rules

•  Semantics defined through entailment rules
•  Rule:

–  If S contains <triple pattern> then add <triple>

•  Executing all entailment rules yields realization of S

•  S entails E if E is a subgraph of the realization of S

•  Axiomatic triple are always added

56	

RDF Entailment

•  if E contains <A, B, C> then add
 <B, rdf:type, rdf:Property>

•  if E contains <A, B, l> (l is a valid XML literal) then add
<_:X, rdf:type, rdf:XMLLiteral>

 where _:X identifies to blank node allocated to l

29

57	

RDFS Entailment 1

•  everything in the subject is a resource
–  if E contains <A,B,C> then add <A, rdf:type, rdfs:Resource>

•  every non-literal in the object is a resource
–  if E contains <A,B,C> (C is not a literal) then add <C, rdf:type, rdfs:Resource>

•  every class is subclass of rdfs:Resource
–  if E contains <A, rdf:type, rdfs:Class> then add <A, rdfs:subClassOf,

rdfs:Resource>

•  inheritance:
–  if E contains <A, rdf:type, B>, <B, rdfs:subClassOf, C> then add <A,

rdf:type, C>

•  rdfs:subClassOf is transitive
–  if E contains <A, rdfs:subClassOf, B>, <B, rdfs:subClassOf, C> then add <A,

rdfs:subClassOf, C>

58	

RDFS Entailment 2

•  rdfs:subClassOf is reflexive
–  if E contains <A, rdf:type, rdfs:Class> then add <A,

rdfs:subClassOf, A>

•  rdfs:subPropertyOf is transitive
–  if E contains <A, rdfs:subPropertyOf, B>, <B, rdfs:subPropertyOf,

C> then add <A, rdfs:subPropertyOf, C>

•  rdfs:subPropertyOf is reflexive
–  if E contains <P, rdf:type, rdf:Property> then add <P,

rdfs:subPropertyOf, P>

•  domain of properties
–  if E contains <P, rdfs:domain, C>, <A, P, B> then add <A,

rdf:type, C>

•  range of properties
–  if E contains <P, rdfs:range, C>, <A, P, B> then add <B, rdf:type,

C>

30

59	

RDFS Entailment 3

•  every literal is a member of rdfs:Literal
–  if E contains <A, B, l> (l is a plain literal) then add <_:X, rdf:type,

rdfs:Literal>

•  every datatype is subclass of rdfs:Literal
–  if E contains <A, rdf:type, rdfs:Datatype> then add <A,

rdfs:subClassOf, rdfs:Literal>

60	

RDF(S) SERIALIZATION

31

61	

RDF Serialization Formats

There are several machine readable serialization formats for RDF

•  RDF/XML

•  Turtle

•  N3

62	

RDF/XML 1

•  Serializing RDF for the Web
–  XML as standardized interchange format:

•  Namespaces (e.g. rdf:type, xsd:integer, ex:john)
•  Encoding (e.g. UTF8, iso-8859-1)
•  XML Schema (e.g. datatypes)

•  Reuse of existing XML tools:
–  Syntax checking (i.e. schema validation)
–  Transformation (via XSLT)

•  Different RDF representation
•  Layout (XHTML)
•  Different XML-based formats

•  Parsing and in-memory representation/manipulation (DOM/SAX)
•  . . .

32

63	

RDF/XML 2

 <#john, #hasName, “John”>
 <#john, #marriedTo, #mary>

64	

RDF/XML 3

33

65	

Turtle

•  Turtle stands for Terse RDF Triple Language

•  An RDF serialization

•  Triple representation of <Subject, Predicate, Object>

•  Example:
@prefix person: <http://example/person/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
person: A foaf:name “Jek" .
person: A foaf:mbox <mailto:jek@example.net> .
person: B foaf:name “Yuan" .
_:b foaf:name “Jeff" .
_:b foaf:mbox <mailto:jeff@example.org> .

66	

RDF N3 syntax

•  Notation3, or N3

•  A shorthand non-XML serialization of RDF models

•  Designed for human-readability
–  much more compact and readable than XML RDF notation

•  Example
{:John :Loves :Mary} :accordingTo :Bill

34

67	

TOOLS

68	

Tool Support for RDF/RDFS

•  Ontology editors
–  Protégé (http://protege.stanford.edu/)

•  Browser
–  /facet (http://slashfacet.semanticweb.org/)

•  RFD repositories
–  Sesame (http://www.openrdf.org/)

•  APIs
–  RDF2Go – Java (http://semanticweb.org/wiki/RDF2Go)
–  Jena – Java (http://jena.sourceforge.net/)

•  Validator
–  W3C Validator (http://www.w3.org/RDF/Validator/)

35

69	

•  Developed by Stanford Medical Informatics

•  Has a large user community (approx 30k)

•  Support

–  Graph view, consistency check, web, merging

•  No support
–  Addition of new basic types
–  Limited multi-user support

70	

/facet

•  /facet is a generic browser for
heterogeneous semantic web
repositories

•  Works on any RDFS dataset
without any additional
configuration

•  Select and navigate facets of
resources of any type

•  Make selections based on
properties of other,
semantically related, types

•  Allows the inclusion of facet-
specific display options

36

71	

Sesame

•  A framework for storage, querying and inferencing of RDF and RDF
Schema

•  A Java Library for handling RDF

•  A Database Server for (remote) access
to repositories of RDF data

•  Features:
–  Light-weight yet powerful Java API
–  SeRQL, SPARQL
–  High scalability (O(10^7) triples on desktop hardware)
–  Various backends (Native Store, RDBMS, main memory)
–  Reasoning support
–  Transactional support
–  Context support
–  RDF/XML, Turtle, N3, N-Triples

72	

Jena

•  A Java framework for building Semantic Web applications

•  Initiated by Hewlett Packard (HP) Labs Semantic Web Programme.

•  Includes:
–  A RDF API
–  Reading and writing RDF in RDF/XML, N3 and N-Triples
–  An OWL API
–  In-memory and persistent storage
–  SPARQL query engine

37

73	

RDF2Go

•  RDF2Go is an abstraction over triple (and quad) stores. It allows
developers to program against rdf2go interfaces and choose or change
the implementation later easily

•  It can be extended: you can create an adapter from any RDF Object
Model to RDF2Go object model

•  Directly supported implementations:
–  Jena 2.4
–  Jena 2.6
–  Sesame 2

74	

W3C Validator

•  RDF Validator

•  Parse RDF documents
and detects errors w.r.t.
the current RDF
specification

•  Available online service

•  Downloadable code

•  Based on ARP parser (the
one also adopted in Jena)

38

75	

ILLUSTRATION BY A LARGER
EXAMPLE

An example of usage of RDF and RDF(S)

76	

Friend of a Friend (FOAF)

•  Friend of a Friend is a project that aims at providing simple ways to
describe people and relations among them

•  FOAF adopts RDF and RDFS
•  Full specification available on: http://xmlns.com/foaf/spec/
•  Tools based on FOAF:

–  FOAF search (http://foaf.qdos.com/)
–  FOAF builder (http://foafbuilder.qdos.com/)
–  FOAF-a-matic (http://www.ldodds.com/foaf/foaf-a-matic)
–  FOAF.vix (http://foaf-visualizer.org/)

39

77	

FOAF Schema

[http://www.foaf-project.org/]

78	

FOAF RDF Example

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:foaf="http://
xmlns.com/foaf/0.1/">
 <foaf:Person rdf:ID=“DieterFensel">
 <foaf:name>Dieter Fensel</foaf:name>
 <foaf:title>Univ.-Prof. Dr.</foaf:title>
 <foaf:givenname>Dieter</foaf:givenname>
<foaf:family_name>Fensel</foaf:family_name>
<foaf:mbox_sha1sum>773a221a09f1887a24853c9de06c3480e714278a</
foaf:mbox_sha1sum>
 <foaf:homepage rdf:resource="http://www.fensel.com "/>
 <foaf:depiction rdf:resource="http://www.deri.at/fileadmin/images/photos/
dieter_fensel.jpg"/> <foaf:phone rdf:resource="tel:+43-512-507-6488"/>
 <foaf:workplaceHomepage rdf:resource="http://www.sti-innsbruck.at"/>
<foaf:workInfoHomepage rdf:resource="http://www.sti-innsbruck.at/
about/team/details/?uid=40"/> </foaf:Person>

</rdf:RDF>

40

79	

FOAF Search (http://foaf.qdos.com/)

80	

EXTENSIONS

41

81	

Where can we go from here?

•  RDF(S) has a some limitations in term of representation and semantics,
thus OWL was build on top of it to overcome some of them

•  We have seen how to represent statements in RDF, how to query them?
SPARQL is currently the standard language to query RDF data

•  RDF(S) by itself is not providing any instrument to define personalized
entailment rules

–  The entailment process is driven by RDF(S) Semantics
–  This is not enough in many practical contexts

•  RDF can be extend to add rule support
–  RULE-ML based extensions
–  Horn Logic based extensions
–  OWL Horst (include a fragment of DL as well)
–  OWLIM (include a fragment of DL as well)

82	

SUMMARY

42

83	

Summary

•  RDF
–  Advantages:

•  Reuse existing standards/tools
•  Provides some structure for free (e.g. for containers)
•  Standard format

–  Disadvantages:
•  Verbose
•  Reconstructing RDF graph non-trivial

84	

Summary

•  RDF Schema
–  Advantages

•  A primitive ontology language
•  Offers certain modeling primitives with fixed meaning
•  Key concepts of RDF Schema

–  subclass relations, property, subproperty relations, domain and range restrictions

•  There exist query languages for RDF and RDFS
•  Allows metamodeling

–  Disadvantages
•  A quite primitive as a modeling language for the Web
•  Many desirable modeling primitives are missing

–  An ontology layer on top of RDF/RDFS is needed

43

85	

References

•  Mandatory reading
–  Semantic Web Primer

•  Chapter 3 (only Sections 3.1 to 3.6)

•  Further reading
–  RDF Primer

•  http://www.w3.org/TR/REC-rdf-syntax/
–  RDF Vocabulary Description Language 1.0: RDF Schema

•  http://www.w3.org/TR/rdf-schema/

86	

References

•  Wikipedia
–  http://en.wikipedia.org/wiki/Resource_Description_Framework
–  http://en.wikipedia.org/wiki/RDF_schema
–  http://en.wikipedia.org/wiki/Turtle_(syntax)
–  http://en.wikipedia.org/wiki/Notation_3
–  http://en.wikipedia.org/wiki/N-Triples

44

87	

Next Lecture

Title

1 Introduction

2 Semantic Web Architecture

3 Resource Description Framework (RDF)

4 Web of data

5 Generating Semantic Annotations

6 Storage and Querying

7 Web Ontology Language (OWL)

8 Rule Interchange Format (RIF)

9 Reasoning on the Web

10 Ontologies

11 Social Semantic Web

12 Semantic Web Services

13 Tools

14 Applications

88	
 88

Questions?

