SPARQL
Querying Semantic Web

Erdogan Dogdu

Notes from “Semantic Web for the Working Ontologist” Book

Some slides are adapted from Dieter Fensel and Federico Facca
(University of Innsbruck) notes

Motivation

* Having RDF data available is not enough

— Need tools to process, transform, and reason with
the information

— Need a way to store the RDF data and interact
with it
* Are existing storage systems appropriate to
store RDF data?

* Are existing query languages appropriate to
query RDF data?

06/10/15

Databases and RDF

* Relational database are a well established technology to store
information and provide query support (SQL)

* Relational database have been designed and implemented to store
concepts in a predefined (not frequently alterable) schema.

* How can we store the following RDF data in a relational database?

<rdf:Description rdf:about="949318">
<rdf:type rdf:resource="g&uni;lecturer"/>
<uni:name>Dieter Fensel</uni:name>
<uni:title>University Professor</uni:title>
</rdf:Description>

* Several solutions are possible

Databases and RDF

* Solution 1: Relational “Traditional” approach

Lecturer

id name title

949318 Dieter Fensel University Professor

* Approach: We can create a table “Lecturer” to store
information about the “Lecturer” RDF Class.

* Drawbacks: Every time we need to add new content we
have to create a new table -> Not scalable, not dynamic,
not based on the RDF principles (TRIPLES)

06/10/15

Databases and RDF

Solution 2: Relational “Triple” based approach

Subject Predicate ObjectURI ObjectLiteral Id URI Id Value
101 102 103 null 101 949318 201 Dieter Fensel

101 104 201 102 rdf:type 202 University Professor
101 105 202 103 uni:lecturer 203
103 null 104

Approach: We can create a table to maintain all the triples S P
O (and distinguish between URI objects and literals objects).

Drawbacks: We are flexible w.r.t. adding new statements
dynamically without any change to the database structure...
but what about querying?

Why Native RDF Repositories?

What happens if | want to find the names of all the
lecturers?

Solution 1: Relation “traditional” approach:

SELECT NAME FROM LECTURER

We need to query a single table which is easy, quick
and performing

No JOIN required (the most expensive operationin a
db query)

BUT we already said that Traditional approach is not
appropriate

06/10/15

Why Native RDF Repositories?

* What happens if | want to find the names of all the
lecturers?
* Solution 2: Relational “triple” based approach:

SELECT L.Value FROM Literals AS L
INNER JOIN Statement AS S ON
S.ObjectLiteral=L.ID
INNER JOIN Resources AS R ON R.ID=S.Predicate
INNER JOIN Statement AS S1 ON
Sl .Predicate=S.Predicate
INNER JOIN Resources AS R1 ON
R1.ID=S1.Predicate
INNER JOIN Resources AS R2 ON
R2.ID=S1.0ObjectURI
WHERE R.URI = “uni:name”

AND R1.URI = “rdf:type”
AND R2.URI = “uni:lecturer”

Why Native RDF Repositories?

Solution 2
* The query is quite complex: 5 JOINS!

* This require a lot of optimization specific for RDF and triple
data storage, that it is not included in Relational DB

* For achieving efficiency a layer on top of a database is
required. More, SQL is not appropriate to extract RDF
fragments

* Do we need a new query language?

06/10/15

Query Languages

Querying and inferencing is the very purpose of
information representation in a machine-accessible
way

A query language is a language that allows a user to
retrieve information from a “data source”
— E.g. data sources

* Asimple text file

* XML file

* A database

* The “Web”
Query languages usually includes insert and update
operations

Example of Query Languages

saL

— Query language for relational databases

XQuery, XPointer and XPath
— Query languages for XML data sources

SPARQL
— Query language for RDF graphs

RDQL

— Query language for RDF in Jena models

06/10/15

XPath: a simple query language for
XML trees

The basis for most XML query languages
— Selection of document parts
— Search context: ordered set of nodes

Used extensively in XSLT
— XPath itself has non-XML syntax

Navigate through the XML Tree

— Similar to a file system (“/“, “../“, “ ./“, etc.)

— Query result is the final search context, usually a set of nodes

— Filters can modify the search context

— Selection of nodes by element names, attribute names, type, content, value, relations
Several pre-defined functions
Version 1.0, W3C Recommendation 16 November 1999

Version 2.0, W3C Recommendation 23 January 2007

Other XML Query Languages

XQuery
— BuiIdiniup on the same functions and data types
as XPat
With XPath 2.0 these two languages get closer
XQuery is not XML based, but there is an XML notation
(XQueryX)
XQuery 1.0, W3C Recommendation 23 January 2007

XQuery XPointer XLink

XSLT

XLink 1.0, W3C Recommendation 27 June 2001
— Defines a standard way of creating hyperlinks in XML documents

XPointer 1.0, W3C Candidate Recommendation
— Allows the hyperlinks to point to more specific parts (fragments) in the
XML document

XSLT 2.0, W3C Recommendation 23 January 2007

06/10/15

06/10/15

Why a New Language?

* RDF description (1):

<rdf:Description rdf:about="949318">
<rdf:type rdf:resource="&uni;lecturer"/>
<uni:name>Dieter Fensel</uni:name>
<uni:title>University Professor</uni:title>
</rdf:Description>

* XPath query:

/rdf :Description[rdf: type=
"http://www.mydomain.org/uni-ns#lecturer"]/uni:name

Why a New Language?

* RDF description (2):
<uni:lecturer rdf:about="949318">
<uni:name>Dieter Fensel</uni:name>

<uni:title>University Professor</uni:title>

</uni:lecturer>

e XPath query:

//uni:lecturer/uni:name

06/10/15

Why a New Language?

* RDF description (3):

<uni:lecturer rdf:about="949318"
uni:name=“"Dieter Fensel"

uni:title=“University Professor"/>

* XPath query:

//uni:lecturer/Quni:name

Why a New Language?

* What is the difference between these three definitions?

* RDF description (1):
<rdf:Description rdf:about="949318">
<rdf:type rdf:resource="&uni;lecturer"/>
<uni:name>Dieter Fensel</uni:name>
<uni:title>University Professor</uni:title>
</rdf:Description>

* RDF description (2):
<uni:lecturer rdf:about="949318">
<uni:name>Dieter Fensel</uni:name>
<uni:title>University Professor</uni:title>
</uni:lecturer>

* RDF description (3):
<uni:lecturer rdf:about="949318"
uni:name=“"Dieter Fensel"
uni:title="University Professor"/>

06/10/15

Why a New Language?

All three description denote the same thing:

(#949318, rdf:type, <uni:lecturer>)

(#949318, <uni:name>, “Dieter Fensel”)
(#949318, <uni:title>, “University Professor”)

But the queries are different depending on a particular
serialization:

/rdf :Description[rdf: type=
"http://www.mydomain.org/uni-ns#lecturer"]/uni:name

//uni:lecturer/uni:name

//uni:lecturer/Quni:name

SPARQL

The standard query language of SemWeb
SPARQL Protocol And RDF Query Language
Similar to Xquery and SQL

Based on specifying RDF triple patterns

See: http://www.w3.org/TR/rdf-sparql-query
for all features of SPARQL

Data

* Movies “James Dean” played in...

@ EastOfEden

playedin

[@ RebelWithoutACause |

Query

* What did James Dean played in?
* Query pattern:

| @ JamesDean | { 9 what |

playedin

* :JamesDean :playedin ?what

20

06/10/15

10

Data

@ NicholasRa
directedBy

| @ RebelWithoutACause |
7

@ GeorgeStevens

directedBy

[JamesDean_] @ Giant_|

directedBy

@ FredGuiol

@ EastOfEden

directedBy Py
iaKazan

21

Query

* Who directed the movies that James Dean
played in?

[@ JamesDean

@ hst |

playedin directedBy

* :JamesDean :playedin ?what
e ?what :directedBy ?who

22

06/10/15

11

Queries in SPARQL

* What did James Dean played in?

SELECT ?what
WHERE { :JamesDean :playedin ?what }
Answer:
:Giant, :EastOfEden, :RebelWithoutaCause
* Who directed the movies that James Dean played
in?
SELECT ?who

WHERE { :JamesDean :playedin ?what .
?what :directedBy ?who .}

Answer:
:GeorgeStevens, :EliaKazan, :NicholasRay, :FredGuiol

23

Query

* Movies and their directors in which James
Dean played in?
SELECT ?what ?who
WHERE { :JamesDean :playedIn ?what .
?what :directedBy ?who .}

Answer: EESINENN

:Giant :GeorgeStevens
:Giant :FredGuiol
:EastOfEden :EliaKazan

:RebelWithoutaCause :NicholasRay

24

06/10/15

12

06/10/15

Query

* Actresses who played with James Dean in the
same movies

SELECT ?actress ?movie

WHERE { :JamesDean :playedin ?movie .
?actress :playedin ?movie .
?actress rdf:type :Woman }

25

Query

* What is the following query for?

SELECT ?actress ?movie
WHERE { :JamesDean :playedin ?movie .
?actress :playedin ?movie .
?actress a :Woman .
?actress :playedin ?anotherMovie .
?anotherMovie :directedBy :JohnFord .}

26

13

Properties

e SELECT ?property ?value

WHERE {:JamesDean ?property ?value}

e SELECT ?property

WHERE {:JamesDean ?property ?value}

?property
bornOn
diedOn
playedin
playedin
playedin

rdf:type
rdfs:label

?property ?value
bornOn 1931-02-08
diedOn 1955-09-30
playedin RebelWithoutaCause
playedin EastOfEden
playedin Giant
rdf:type Man
rdfs:label James Dean
27
Properties

28

06/10/15

14

06/10/15

Properties

e SELECT DISTINCT ?property
WHERE { :JamesDean ?property ?value}

?property
bornOn
diedOn
playedin

rdf:type
rdfs:label

29

Querying schema

* What do Actors do?

SELECT DISTINCT ?property

WHERE { ?q0 a :Actor. 2property

?q0 ?property ?object .} |uomon
diedOn
playedin
rdf:type
rdfs:label
produced
sang
wrote

30

15

Querying schema

* Find all classes

SELECT DISTINCT ?class WHERE {?q0 a ?class}
* Find all properties

SELECT DISTINCT ?property

WHERE {?q0 ?property ?q1}

FILTER

* Excluding some results
* Actors who played in East of Eden, who were
bornin 1930 or later?

SELECT ?actor

WHERE {?actor :playedIn :EastOfEden .

FILTER (?birthday > "1930-01-01"~xsd:date)}
Answer: (none)

Why?

06/10/15

16

FILTER

* Correct query
SELECT ?actor
WHERE {

?actor :playedin :EastOfEden .
?actor :bornOn ?birthday .
FILTER (?birthday > "1930-01-01"~"xsd:date)

}
* Another one
SELECT ?person
WHERE { ?person a :Person .
?person :bornOn ?birthday .
FILTER (?birthday > "Jan 1, 1960"*"xsd:date)
FILTER (?birthday < "Dec 31, 1969"*"xsd:date) }

OPTIONAL

e Actors who played in Giant and their death date

SELECT ?actor ?deathdate actor

WHERE { ?actor :playedin :Giant . | RockHudson

JamesDean

?actor :diedOn ?deathdate .}

deathdate

1985-10-02
1955-10-30

* If they did not die (yet)
SELECT ?actor ?deathdate

Actor

WHERE {?actor :playedIn :Giant . -
OPTIONAL { ettt Ty
?actor :diedOn ?deathdate .}}

deathdate

1985-10-02
1955-10-30
(no binding)

06/10/15

17

Negation

* SPARQL1.1
* By specifying that certain triples do not exist

* UNSAID
— Find a matching graph for which UNSAID pattern does
not exist
* All of the living actors who played in Giant.
SELECT ?actor
WHERE { ?actor :playedin :Giant .
UNSAID {?actor :diedOn ?deathdate .} }

35

ASK query

* Yes/no questions

* |s Elizabeth Taylor alive?
ASK WHERE {:ElizabethTaylor :diedOn ?any}
Answer: No

* Correct query

ASK WHERE {
UNSAID { :ElizabethTaylor :diedOn ?any}

}

Answer: Yes

06/10/15

18

06/10/15

ASK query

* Was any actor in Giant born after 19507
ASK WHERE {
?any :playedIn :Giant.
?any :bornOn ?birthday .
FILTER (?birthday > “1950-01-01”"xsd:date)

CONSTRUCT query

* Query that returns a graph (triples)

CONSTRUCT{ ?d rdf:type :Director.
?d rdfs:label ?name . }
WHERE { ?any :directedBy ?d .
?d rdfs:label ?name . }

19

Using SPARQL as a rule language

* CONSTRUCT {?91 :hasSon :q2 .}
WHERE {?g2 :hasFather ?q1}
* No
— CONSTRUCT {?q1 :hasSon :q2 .}
WHERE {?g2 :hasFather ?ql. ?q2 a :Man. }

— CONSTRUCT {?qg1 :hasDaughter :q2 .}
WHERE {?g2 :hasFather ?ql. ?q2 a :Woman. }

Using SPARQL as a rule language

* CONSTRUCT {?91 a :Mortal}
WHERE {?qg1 a :Man}

* CONSTRUCT {?q1 :hasUncle ?q2}

WHERE {?g2 :hasSister ?s .

?ql :hasMother ?s .}
* CONSTRUCT {?qg1 :hasSibling ?q2} WHERE {?qg1 :hasBrother ?q2}
* CONSTRUCT {?q1 :hasSibling ?q2} WHERE {?q1 :hasSister ?q2}
* CONSTRUCT {?q1l :hasParent ?q2} WHERE {?q1 :hasFather ?q2}
* CONSTRUCT {?qg1 :hasParent ?q2} WHERE {?q1 :hasMother ?q2}

06/10/15

20

Transitive queries

* (SPARQL 1.1)

e Children of Joe
— SELECT ?member
WHERE {?member :hasParent :Joe}
* Grandchildren of Joe

— SELECT ?member
WHERE { ?int :hasParent :Joe .
?member :hasParent ?int .}

41

Transitive queries

* All children, grandchildren, great-
grandchildren, etc.
— SELECT ?member
WHERE {?member :hasParent* :Joe .}
* The result includes Joe as well
— SELECT ?member
WHERE {?member :hasParent+ :Joe .}

* At least one triple in the chain should exist,
Joe is excluded (correct query)

06/10/15

21

Federating SPARQL Queries

* Querying from more than one data source
— Via SPARQL endpoints (SERVICE)
— Or via named graphs (GRAPH)

SELECT ?entry
WHERE { ?actor :playedIn :Giant .
?actor rdfs:label ?name .
SERVICE <http://dbpedia.org/sparql>
{ ?entry rdfs:label ?name .}

ORDER

* Order by date
SELECT ?title ?date
WHERE { :JamesDean :playedin ?movie.
?movie rdfs:label ?title .
?movie dc:date ?date . }
ORDER BY ?date

44

06/10/15

22

LIMIT

* Earliest James Dean movie
SELECT ?title
WHERE { :JamesDean :playedin ?m.
?m rdfs:label ?title .
?m dc:date ?date . }
ORDER BY ?date
LIMIT 1

45

Aggregates and grouping

(SPARQL 1.1)

SELECT (COUNT (?movie) AS ?howmany)
WHERE {:JamesDean ?playedin ?movie .}

SELECT (SUM (?val) AS ?total)
WHERE { ?s a :Sale .
?s :amount ?val }

SELECT ?year (SUM (?val) AS ?total)
WHERE { ?s a :Sale .

?s :amount ?val . ?s :year ?year }
GROUP BY ?year

46

06/10/15

23

Subqueries (SPARQL 1.1)

SELECT ?company
WHERE {
{ SELECT ?company ((SUM(?val)) AS ?total09)
WHERE {
?sa:Sale.
?s :amount ?val .
?s :company ?company .
?s:year 2009 .}
GROUP BY ?company }.
{SELECT ?company ((SUM(?val)) AS ?total10)
WHERE {
?sa:Sale.
?s :amount ?val .
?s :company ?company .
?s:year 2010 .}
GROUP BY ?company } .
FILTER (?total10 > ?total09) . }

47

UNION

 All the actors who played either in Rebel Without
a Cause or Giant.

SELECT ?actor
WHERE {
{ ?actor :playedIn :Giant . }
UNION
{ ?actor :playedIn :RebelWithoutaCause . }

48

06/10/15

24

Assignment

* SELECT (fn:concat (?first, " ", ?last) AS ?
fullname)
WHERE {:WorkingOntologist dc:creator ?author .
?author :firstName ?first .
?author :lastName ?last .

}

49

References

e http://www.w3.org/TR/rdf-spargl-query
e http://dig.csail.mit.edu/2010/Courses/6.898/
resources/sparql-tutorial.pdf

* Semantic Web for the Working Ontologist,
2nd Ed., Wiley

06/10/15

25

