
Motivation for probabilistic reasoning

• Modeling of uncertainty
– Inherent randomness (e.g., radioactive decay)
– Gross statistical dependencies of complex deterministic world (e.g., coin toss)

• Probability as guardian of commonsense reasoning

• Many empirical successes: robotics, language, speech, bioinformatics, etc.

Review

• Discrete random variable X
Domain of possible values {x1, x2, . . . , xm}
Ex: month M , {m1 = January,m2 = February, . . . ,m12 = December}

• Unconditional (prior) probability P (X = xi)

• Basic axioms:

(i) P (X = xi) ≥ 0

(ii)
∑

i P (X = xi) = 1

(iii) P (X = xi or X = xj) = P (X = xi) + P (X = xj) if xi 6= xj
Probabilities add for the union of mutually exclusive events.

• Conditional (or posterior) probabilities
P (X = xi|Y = yj) probability that X = xi given that Y = yj
In general, P (X = xi|Y = yj) 6= P (X = xi).

• Dependent random variables
Ex: weather W , {w1 = sunny, w2 = rainy}

P (W = sunny) = 0.9

P (W = sunny|M = August) = 0.97

P (W = sunny|M = January) = 0.83

• Independent random variables
Ex: day of week D, {d1 = Sun, d2 = Mon, . . . , d7 = Sat}

P (W = sunny) = 0.9

P (W = sunny|d = Sun) = 0.9

P (W = sunny|d = Mon) = 0.9

...

P (W = sunny|d = Sat) = 0.9
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• Conditionally independent random variables
Ex: Binary random variables
A Was the exam very easy?
B Did Bill ace the exam?
C Did Carol ace the exam?

P (B = 1) < P (B = 1|C = 1)

P (B = 1|A = 1) = P (B = 1|A = 1, C = 1)

Here B and C are not independent random variables, but they are conditionally independent given A.
• Conditionally dependent random variables

Ex: Binary random variables
B Was there a burglary?
E Was there an earthquake?
A Did the alarm go off?

P (B = 1) = P (B = 1|E = 1) = P (B = 1|E = 0)

P (B = 1|A = 1) > P (B = 1|E = 1, A = 1)

Here B and E are independent random variables, but they are conditionally dependent given A.
• Same axioms hold for conditional probabilities:

(i) P (X = xiY = yj) ≥ 0

(ii)
∑

i P (X = xi|Y = yj) = 1 Note: this sum is over i, not j!

• Joint probabilities
P (X = xi, Y = yj) probability that X = xi and Y = yj

• Product rule

For all i, j: P (X = xi, Y = yj) = P (X = xi|Y = yj)P (Y = yj)

P (X = xi, Y = yj) = P (Y = yj |X = xi)P (X = xi)

• Marginalization

P (X = xi) =
∑
j

P (X = xi, Y = yj)

P (X = xi, Y = yj) =
∑
k

P (X = xi, Y = yj , Z = zk)

• Assessing probabilities
It is generally easier for experts to assess conditional probabilities (e.g., the chances of single out-
comes, conditioned on one or more potentially informative events) than joint probabilities (e.g., the
chances of multiple simultaneous outcomes in the absence of potentially relevant context).

• Shorthand notations
(i) Implied universality

P (X,Y ) = P (X|Y )P (Y ) = P (Y |X)P (X)
Implies that equality holds for all assignments X = xi and Y = yj

(ii) Implied assignment
P (x, y, z) = P (X = x, Y = y, Z = z)
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• Generalized product rule
P (A,B,C,D, . . .) = P (A)P (B|A)P (C|A,B)P (D|A,B,C) . . .

• Bayes rule
Equating the two expressions of the product rule for P (X,Y ), we can write:

P (X|Y ) =
P (Y |X)P (X)

P (Y )

• Bayes rule (conditioned on an additional event Z)

P (X|Y, Z) =
P (Y |X,Z)P (X|Z)

P (Y |Z)

Compare to the equation above, and notice how the additional event Z appears in every term on the
right hand side of the conditioning bar.

Alarm example

• Binary random variables
B Was there a burglary?
E Was there an earthquake?
A Did the alarm go off?

• Joint distribution
P (B,E,A) = P (B)P (E)P (A|B,E)

• Prior knowledge
Burglaries are rare: P (B = 1) = 0.001
Earthquakes are rare: P (E = 1|B = 0) = P (E = 1|B = 1) = 0.002
Burglaries and earthquakes are independent events: P (E|B) = P (E).
The alarm is likelier to sound from a burglary than an earthquake:

B E P (A = 1|B,E)

0 0 0.001
1 0 0.94
0 1 0.29
1 1 0.95

Probabilities of complementary events are easy to compute:

P (B = 0) = 1− P (B = 1) = 0.999
P (E = 0) = 1− P (E = 1) = 0.998

P (A = 0|B,E) = 1− P (A = 1|B,E)

• Inference
Do the rules of probability capture commonsense patterns of reasoning?
Let’s compare P (B = 1), P (B = 1|A = 1), and P (B = 1|A = 1, E = 1).
We are given P (B = 1) = 0.001. How to compute the others?
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• Bayes rule

P (B = 1|A = 1) =
P (A = 1|B = 1)P (B = 1)

P (A = 1)

In the numerator:

P (A = 1|B = 1) =
∑

e∈{0,1}
P (A = 1, E = e|B = 1) (marginalization)

=
∑

e∈{0,1}
P (A = 1|E = e,B = 1)P (E = e|B = 1) (product rule)

=
∑

e∈{0,1}
P (A = 1|E = e,B = 1)P (E = e) (independence)

= P (A = 1|E = 0, B = 1)P (E = 0) + P (A = 1|E = 1, B = 1)P (E = 1)

= (0.94)(1− 0.002) + (0.95)(0.002)

= 0.94002

In the denominator:

P (A = 1) =
∑

e,b∈{0,1}
P (A = 1, E = e,B = b) (marginalization)

=
∑
e,b

P (A = 1|E = e,B = b)P (E = e|B = b)P (B = b) (product rule)

=
∑
e,b

P (A = 1|E = e,B = b)P (E = e)P (B = b) (independence)

= P (A = 1|E = 0, B = 0)P (E = 0)P (B = 0) + (three other terms)

= 0.00252

Substituting into Bayes rule:

P (B = 1|A = 1) =
P (A = 1|B = 1)P (B = 1)

P (A = 1)
=

(0.94002)(0.001)

(0.00252)
= 0.37

So far this agrees with commonsense: P (B = 1) = 0.001 and P (B = 1|A = 1) = 0.37.
And indeed, we are much more likely to think that a burglary occurred given that the alarm sounded.

• Bayes rule (again)

P (B = 1|A = 1, E = 1) =
P (A = 1|B = 1, E = 1)P (B = 1|E = 1)

P (A = 1|E = 1)

Compare this to the previous invocation of Bayes rule; in particular, notice how we have simply added
the event E = 1 to the right hand side of every conditioning bar in the equation.

In the denominator:

P (A = 1|E = 1) =
P (A = 1, E = 1)

P (E = 1)
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The only unknown probability that we need to compute is P (A = 1, E = 1). The calculation is very
similar to earlier ones:

P (A = 1, E = 1) =
∑
b

P (A = 1, E = 1, B = b) (marginalization)

=
∑
b

P (A = 1|E = 1, B = b)P (E = 1|B = b)P (B = b) (product rule)

=
∑
b

P (A = 1|E = 1, B = b)P (E = 1)P (B = b) (independence)

= P (A = 1|E = 1, B = 0)P (E = 1)P (B = 0) +

P (A = 1|E = 1, B = 1)P (E = 1)P (B = 1)

= (0.29)(0.002)(1− 0.001) + (0.95)(0.002)(0.001)

= 0.00058

Substituting into Bayes rule again:

P (B = 1|A = 1, E = 1) =
P (A = 1|B = 1, E = 1)P (B = 1|E = 1)

P (A = 1|E = 1)

=
P (A = 1|B = 1, E = 1)P (B = 1)

P (A = 1|E = 1)
(independence)

=
P (A = 1|B = 1, E = 1)P (B = 1)

P (A=1,E=1)
P (E=1

(product rule)

=
(0.95)(0.001)(

0.00058
0.002

)
= 0.0033

Again this agrees with commonsense patterns of reasoning. In particular, here is what we have com-
puted and how it accords with common sense:

P (B = 1) = 0.001 “Burglaries are rare. No need to worry.”

P (B = 1|A = 1) = 0.37 “Oh no! The alarm may have been triggered by a burglar.”

P (B = 1|A = 1, E = 1) = 0.0033 “Nah, probably the alarm was triggered by the earthquake.”

This is an example of non-monotonic reasoning: after learning that the alarm has sounded, we are
more afraid that a burglary has occurred, but after learning (in addition) that an earthquake has oc-
curred, we are less afraid.

This particular pattern of reasoning is known as explaining away. Note how the earthquake explains
away the alarm, thus diminishing our fear of a burglary.

These probabilities also reveal an example of conditional dependence. Burglaries and earthquakes are
independent events, but this independence does not hold when we condition on the sounding of the
alarm. In particular:

P (B) = P (B|E) (independence)

P (B|A) 6= P (B|A,E) (conditional dependence)
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You should start to see patterns in these calculations as well. Notice how Bayes rule is invoked to
infer causes from effects. Also notice the frequent consecutive steps involving marginalization, the
product rule, and the appeal to independence. This suggests that many of these computations might
be efficiently automated. (To be continued ...)

6


