
CSE 250a. Assignment 4

Out: Tue Oct 27
Due: Thu Nov 3

4.1 Gradient-based learning

X1 X2 X3 Xd
...

Y

Consider the belief network shown above with binary random variable Y ∈ {0, 1} and conditional proba-
bility table (CPT):

P (Y =1|x1, x2, . . . , xd) = f

(
d∑
i=1

wixi

)
= f(~w · ~x) .

Here, we assume that the weights wi ∈ < are real-valued parameters to be estimated from data and that
f :< → [0, 1] is a differentiable function that maps its real-valued argument to the unit interval.

Consider a data set of i.i.d. examples {(~xt, yt)}Tt=1 where ~xt = (x1t, x2t, . . . , xdt) denotes the observed
vector of values from the tth example for the network’s inputs. Also, as shorthand, let pt = P (Y =1|~xt).

(a) Show that the gradient of the conditional log-likelihood L =
∑
t logP (yt|~xt) is given by:

∂L
∂wi

=
T∑
t=1

[
f ′(~w · ~xt)
pt(1− pt)

]
(yt − pt)xit,

where f ′(z) denotes the first derivative of f(z). Intuitively, this result shows that the differences be-
tween observed values yt and predictions pt appear as error signals for learning.

(b) Show that the general result in part (a) reduces to the result in lecture when f(z) = [1 + e−z]
−1 is the

sigmoid function.

1

4.2 Multinomial logistic regression

X1 X2 X3 Xd
...

Y

A simple generalization of logistic regression is to predict a discrete (but non-binary) label y ∈ {1, 2, . . . , c}
from a real-valued vector ~x ∈ Rd. Here c is the number of classes. For the belief network shown above,
consider the following parameterized conditional probability table (CPT):

P (Y = i| ~X=~x) =
e~wi·~x∑c
j=1 e

~wj ·~x
.

The parameters of this CPT are the weight vectors ~wi which must be learned for each possible label. The
denominator normalizes the distribution so that the elements of the CPT sum to one.

Consider a data set of T examples {(~xt, yt)}Tt=1, which you can assume to be identically, independently
distributed (i.i.d.). As shorthand, let yit ∈ {0, 1} denote the c×T matrix of target assignments with elements

yit =

{
1 if yt = i,
0 otherwise.

Also, let pit ∈ [0, 1] denote the conditional probability that the model classifies the tth example by the ith
possible label:

pit =
e~wi·~xt∑c
j=1 e

~wj ·~xt
.

The weight vectors can be obtained by maximum likelihood estimation using gradient ascent. Show that the
gradient of the conditional log-likelihood L =

∑
t logP (yt|~xt) is given by:

∂L
∂ ~wi

=
∑
t

(yit − pit) ~xt.

Again, this result shows that the differences between observed values yit and predictions pit appear as error
signals for learning.

2

4.3 Convergence of gradient descent

One way to gain intuition for gradient descent is to analyze its behavior in simple settings. For a one-
dimensional function f(x) over the real line, gradient descent takes the form:

xn+1 = xn − ηf ′(xn).

(a) Consider minimizing the function f(x) = α
2 (x−x∗)

2 by gradient descent, where α>0. (In this case,
we know that the minimum occurs at x = x∗; our goal is to analyze the rate of convergence to this
minimum.) Derive an expression for the error εn = xn − x∗ at the nth iteration in terms of the initial
error ε0 and the step size η>0.

(b) For what values of the step size η does the update rule converge to the minimum at x∗? What step
size leads to the fastest convergence, and how is it related to f ′′(xn)?

In practice, the gradient descent learning rule is often modified to dampen oscillations at the end of the
learning procedure. A common variant of gradient descent involves adding a so-called momentum term:

~xn+1 = ~xn − η∇f + β (~xn − ~xn−1) ,

where β>0. Intuitively, the name arises because the optimization continues of its own momentum (stepping
in the same direction as its previous update) even when the gradient vanishes. In one dimension, this learning
rule simplifies to:

xn+1 = xn − ηf ′(xn) + β(xn−xn−1).

(c) Consider minimizing the quadratic function in part (a) by gradient descent with a momentum term.
Again, let εn=xn − x∗ denote the error at the nth iteration. Show that the error in this case satisfies
the recursion relation:

εn+1 = (1− αη + β)εn − βεn−1.

(d) Suppose that the second derivative f ′′(x∗) is given by α = 1, the learning rate by η = 4
9 , and the

momentum parameter by β = 1
9 . Show that one solution to the recursion in part (c) is given by:

εn = λnε0,

where ε0 is the initial error and λ is a numerical constant to be determined. (Other solutions are also
possible, depending on the way that the momentum term is defined at time t = 0; do not concern
yourself with this.) How does this rate of convergence compare to that of gradient descent with the
same learning rate (η = 4

9) but no momentum parameter (β = 0)?

3

4.4 Newton’s method

One way to gain intuition for Newton’s method is to analyze its behavior in simple settings. For a twice-
differentiable function f(x) over the real line, Newton’s method takes the form:

xn+1 = xn −
f ′(xn)

f ′′(xn)
.

(a) Consider the polynomial function f(x) = (x−x∗)2p for positive integers p, whose minimum occurs
at x=x∗. Suppose that Newton’s method is used to minimize this function, starting from some initial
estimate x0. Derive an expression for the error εn = |xn−x∗| at the nth iteration in terms of the initial
error ε0.

(b) For the function in part (a), how many iterations of Newton’s method are required to reduce the initial
error by a constant factor δ < 1, such that εn ≤ δε0? Starting from your previous answer, show that
n ≥ (2p−1) log(1/δ) iterations are sufficient. (Hint: use the inequality that log z ≤ z−1 for z>0.)

(c) Consider the function f(x) = x∗ log(x∗/x)− x∗ + x, where x∗>0. Show that the minimum occurs
at x=x∗, and sketch the function in the region |x− x∗| < x∗.

(d) Consider minimizing the function in part (c) by Newton’s method. Derive an expression for the
relative error ρn = (xn−x∗)/x∗ at the nth iteration in terms of the initial relative error ρ0. Note the
rapid convergence (which is typical of Newton’s method). For what range of initial values (for x0)
does Newton’s method converge to the correct answer?

4

4.5 Stock market prediction

In this problem, you will apply a simple linear model to predicting the stock market. From the course web
site, download the files nasdaq00.txt and nasdaq01.txt, which contain the NASDAQ indices at the
close of business days in 2000 and 2001.

2000 2001
1K

2K

3K

4K

5K

6K

year

pr
ic

e

NASDAQ

TRAIN TEST

(a) Linear coefficients

How accurately can the index on one day be predicted by a linear combination of the three preceding
indices? Using only data from the year 2000, compute the linear coefficients (a1,a2,a3) that maximize
the log-likelihood L =

∑
t logP (xt|xt−1, xt−2, xt−3), where:

P (xt|xt−1, xt−2, xt−3) =
1√
2π

exp

[
−1

2

(
xt − a1xt−1 − a2xt−2 − a3xt−3

)2
]
,

and the sum is over business days in the year 2000 (starting from the fourth day).

(b) Mean squared prediction error

For the coefficients estimated in part (a), compare the model’s performance (in terms of mean squared
error) on the data from the years 2000 and 2001. Would you recommend this linear model for stock
market prediction?

(c) Source code

Turn in a print-out of your source code. You may program in the language of your choice, and you
may solve the required system of linear equations either by hand or by using built-in routines (e.g., in
Matlab, NumPy).

5

4.6 Handwritten digit classification

In this problem, you will use logistic regression to classify images of handwritten digits. From the course
web site, download the files train3.txt, test3.txt, train5.txt, and test5.txt. These files
contain data for binary images of handwritten digits. Each image is an 8x8 bitmap represented in the files
by one line of text. Some of the examples are shown in the following figure.

(a) Training

Perform a logistic regression (using gradient ascent or Newton’s method) on the images in files
train3.txt and train5.txt. Indicate clearly the algorithm used, and provide evidence that
it has converged (or nearly converged) by plotting or printing out the log-likelihood on several itera-
tions of the algorithm, as well as the percent error rate on the images in these files. Also, print out the
64 elements of your solution for the weight vector as an 8x8 matrix.

(b) Testing

Use the model learned in part (a) to label the images in the files test3.txt and test5.txt.
Report your percent error rate on these images.

(c) Source code

Turn in a print-out of your source code. Once again, you may program in the language of your
choice. You should write your own routines for computing the model’s log-likelihood, gradient,
and/or Hessian, as well as for updating its weight vector.

6

