
CSE 250a. Assignment 7

Out: Tue Dec 01
Due: Tue Dec 08 — to box outside room 3214 before noon — NO EXTENSIONS
Reading: Sutton & Barto, Chapters 1-4.

7.1 Policy improvement

Consider the Markov decision process (MDP) with two states s ∈ {0, 1}, two actions a ∈ {0, 1}, discount
factor γ= 2

3 , and rewards and transition matrices as shown below:
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(a) Consider the policy π that chooses the action a = 0 in each state. For this policy, solve the linear
system of Bellman equations to compute the state-value function V π(s) for s∈{0, 1}. Your answers
should complete the following table.

s π(s) V π(s)

0 0
1 0

(b) Compute the greedy policy π′(s) with respect to the state-value function V π(s) from part (a). Your
answers should complete the following table.

s π(s) π′(s)

0 0
1 0

1



7.2 Value and policy iteration

In this problem, you will use value and policy iteration to find the optimal policy of the MDP demonstrated
in class. This MDP has |S| = 81 states, |A| = 4 actions, and discount factor γ = 0.99. Download the
ASCII files on the course web site that store the transition matrices and reward function for this MDP. The
transition matrices are stored in a sparse format, listing only the row and column indices with non-zero
values; if loaded correctly, the rows of these matrices should sum to one.

(a) Compute the optimal state value function V ∗(s) using the method of value iteration. Print out a list
of the non-zero values of V ∗(s). Compare your answer to the numbered maze shown below. The
correct value function will have positive values at all the numbered squares and negative values at the
all squares with dragons.

(b) Compute the optimal policy π∗(s) from your answer in part (a). Interpret the four actions in this MDP
as (probable) moves to the WEST, NORTH, EAST, and SOUTH. Fill in the correspondingly numbered
squares of the maze with arrows that point in the directions prescribed by the optimal policy. Turn in
a copy of your solution for the optimal policy, as visualized in this way.

(c) Compute the optimal policy π∗(s) using the method of policy iteration. For the numbered squares in
the maze, does it agree with your result from part (b)?

(d) Turn in your source code to all the above questions. As usual, you may program in the language of
your choice.
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7.3 Effective horizon time

Consider a Markov decision process (MDP) whose rewards rt∈ [0, 1] are bounded between zero and
one. Let h = (1 − γ)−1 define an effective horizon time in terms of the discount factor 0≤γ<1.
Consider the approximation to the (infinite horizon) discounted return,

r0 + γr1 + γ2r2 + γ3r3 + γ4r4 + . . . ,

obtained by neglecting rewards from some time t and beyond. Recalling that log γ ≤ γ−1, show that
the error from such an approximation decays exponentially as:∑

n≥t
γnrn ≤ he−t/h.

Thus, we can view MDPs with discounted returns as similar to MDPs with finite horizons, where the
finite horizon h=(1− γ)−1 grows as γ→1. This is a useful intuition for proving the convergence of
many algorithms in reinforcement learning.

7.4 Convergence of iterative policy evaluation

Consider an MDP with transition matrices P (s′|s, a) and reward function R(s). In class, we showed
that the state value function V π(s) for a fixed policy π satisfies the Bellman equation:

V π(s) = R(s) + γ
∑
s′

P (s′|s, π(s))V π(s′).

For γ < 1, one method to solve this set of linear equations is by iteration. Initialize the state value
function by V0(s)=0 for all states s. The update rule at the kth iteration is given by:

Vk+1(s) ← R(s) + γ
∑
s′

P (s′|s, π(s))Vk(s
′).

Use a contraction mapping to derive an upper bound on the error

∆k = maxs |Vk(s)− V π(s)|

after k iterations of the update rule. Your result should show that the error ∆k decays exponentially
fast in the number of iterations, k, and hence that limk→∞ Vk(s)=V π(s) for all states s.

7.5 Value function for a random walk

Consider a Markov decision process (MDP) with discrete states s ∈ {0, 1, 2, . . . ,∞} and rewards
R(s) =s that grow linearly as a function of the state. Also, consider a policy π whose action in each
state either leaves the state unchanged or yields a transition to the next highest state:

P (s′|s, π(s)) =


3
4 if s′ = s

1
4 if s′ = s+1

0 otherwise
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Intuitively, this policy can be viewed as a right-drifting random walk. As usual, the value function for
this policy, V π(s) = E

[∑∞
t=0 γ

tR(st)
∣∣ s0 = s

]
, is defined as the expected sum of discounted rewards

starting from state s.

(a) Assume that the value function V π(s) satisfies a Bellman equation analogous to the one in MDPs
with finite state spaces. Write down the Bellman equation satisfied by V π(s).

(b) Show that one possible solution to the Bellman equation in part (a) is given by the linear form
V π(s) = as+ b, where a and b are coefficients that you should express in terms of the discount
factor γ. (Hint: substitute this solution into both sides of the Bellman equation, and solve for a
and b by requiring that both sides are equal for all values of s.)

(*) Challenge (optional, no credit): justify that the value function V π(s) has this linear form. In
other words, rule out other possible solutions to the Bellman equation for this policy.

7.6 Explore or exploit

Consider a Markov decision process (MDP) with discrete states s ∈ {1, 2, . . . , n}, binary actions
a∈{0, 1}, deterministic rewards R(s), and transition probabilities:

P (s′|s, a= 0) =
1

n
for all s′,

P (s′|s, a= 1) =

{
1 for s=s′,
0 otherwise.

In this MDP, the “explore” action a = 0 leads to uniformly random exploration of the state space,
while the “exploit” action a=1 leaves the agent in its current state.

The simple structure of this MDP allows one to calculate its value functions, as well as the form of its
optimal policy. This problem guides you through those calculations.

(a) Local reward-mining
As usual, the state-value function V π(s) is defined as the expected sum of discounted rewards
starting from state s at time t=0 and taking action π(st) at time t:

V π(s) = Eπ
[ ∞∑
t=0

γtR(st)

∣∣∣∣∣ s0 = s

]
.

Consider the subset of states S1 = {s|π(s)=1} in which the agent chooses the “exploit” action.
Compute V π(s) for states s∈S1 by evaluating the expected sum of discounted rewards.

(b) Bellman equation for exploration
Consider the subset of states S0 = {s|π(s)=0} in which the agent chooses the “explore” action.
Write down the Bellman equation satisfied by the value function V π(s) for states s∈S0. Your
answer should substitute in the appropriate transition probabilities from these states.
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(c) State-averaged value function
Assume that the reward function, averaged over the state space, has zero mean: 1

n

∑
sR(s) = 0.

Let µ = 1
n |S0| denote the fraction of states in which the agent chooses to explore.

Let r = 1
n

∑
s∈S1 R(s) denote the average reward in the remaining states.

Let v = 1
n

∑
s V

π(s) denote the expected return if the initial state is chosen uniformly at random.

Combining your results from parts (a-b), show that the state-averaged expected return v is
given by:

v =
γr

(1− γ)(1− γµ)

(d) Value of exploration
Using the results from parts (b) and (c), express the state-value function V π(s) for states s∈S0
in terms of the reward function R(s), the discount factor γ, and the quantities r and µ.

(e) Optimal policy
The form of this MDP suggests the following intuitive strategy: in states with low rewards, opt
for random exploration at the next time step, while in states with high rewards, opt to remain in
place, exploiting the current reward for all future time. In this problem, you will confirm this
intuition.
Starting from the observation that an optimal policy is its own greedy policy, infer that the
optimal policy π∗ in this MDP takes the simple form:

π∗(s) =

{
1 if V ∗(s) > θ
0 if V ∗(s) ≤ θ

where the threshold θ is a constant, independent of the state s. As part of your answer, express
the threshold θ in terms of the state-averaged optimal value function v∗ = 1

n

∑
s V
∗(s).

7.7 Stochastic approximation

In this problem, you will analyze an incremental update rule for estimating the mean µ = E[X] of a
random variable X from samples {x1, x2, x3, . . .}. Consider the incremental update rule:

µk ← µk−1 + αk(xk − µk−1),

with the initial condition µ0 = 0 and step sizes αk = 1/k.

(a) Show that the step sizesαk = 1/k obey the conditions (i)
∑∞
k=1 αk =∞ and (ii)

∑∞
k=1 α

2
k <∞,

thus guaranteeing that the update rule converges to the true mean. (You are not required to prove
convergence.)

(b) Show that for this particular choice of step sizes, the incremental update rule yields the same
result as the sample average: µk = (1/k)(x1 + x2 + . . .+ xk).
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