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What is Overfitting 
•  The training data contains information about the 

regularities in the mapping from input to output. But it also 
contains sampling error. 
•  There will be accidental regularities just because of the 

particular training cases that were chosen. 
•  When we fit the model, it cannot tell which regularities are 

real and which are caused by sampling error.  
•  So it fits both kinds of regularity. If the model is very 

flexible it can model the sampling error really well.  
•  This means the model will not generalize well 

to unseen data 
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Diagnosing Overfitting 
•  Consider Training vs. Test Error as a function of training 

iterations 
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High Bias High Variance 
(Overfitting) 



Preventing Overfitting 
•  Approach 1: Get more data! 

•  Almost always the best bet 
if you have enough 
compute power to train 
on more data. 

•  Approach 2: Use a model 
that has the right capacity: 
•  enough to fit the true 

regularities. 
•  not enough to also fit 

spurious regularities (if 
they are weaker). 

•  Approach 3: Average many 
different models. 
•  Use models with different 

forms. 
•  Or train the model on 

different subsets of the 
training data (this is 
called “bagging”). 
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Limiting Capacity of a Neural Net 
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•  The capacity can be controlled in many ways: 
•  Architecture: Limit the number of hidden layers and 

the number of  units per layer. 
•  Early stopping: Start with small weights and stop the 

learning before it overfits. 
•  Weight-decay: Penalize large weights using penalties 

or constraints on their squared values (L2 penalty) or 
absolute values (L1 penalty). 

•  Noise: Add noise to the weights or the activities. 
•  Typically, a combination of several of these methods is 

used. 
   



Choosing Hyperparameters 
•  The wrong method is to try lots 

of alternatives and see which 
gives the best performance on 
the test set. 
•  This is easy to do, but it gives 

a false impression of how 
well the method works. 

•  The settings that work best 
on the test set are unlikely to 
work as well on a new test 
set drawn from the same 
distribution. 

•  An extreme example: 
Suppose the test set has 
random answers that do not 
depend on the input.  
•  The best architecture 

will do better than 
chance on the test set. 

•  But it cannot be 
expected to do better 
than chance on a new 
test set.  
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Cross-Validation for Hyperparameters 
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•  Divide the total dataset into three subsets: 
•  Training data:  is used for learning the parameters of the model. 
•  Validation data:  is not used for learning but is used for deciding 

what settings of the meta parameters work best. 
•  Test data: is used to get a final, unbiased estimate of how well the 

network works. We expect this estimate to be worse than on the 
validation data. 

•  We could divide the total dataset into one final test set and N other 
subsets and train on all but one of those subsets to get N different 
estimates of the validation error rate.  
•  This is called N-fold cross-validation. 
•  The N estimates are not independent. 



Prevent Overfitting with Early Stopping 
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•  If we have lots of data and a big model, its very 
expensive to keep re-training it with different sized 
penalties on the weights. 

•  It is much cheaper to start with very small weights 
and let them grow until the performance on the 
validation set starts getting worse. 
•  But it can be hard to decide when performance is getting 

worse. 
•  The capacity of the model is limited because the 

weights have not had time to grow big. 



Why Early Stopping Works (1) 
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•  So if we consider small 
weights on Sigmoidal 
hidden units 

g()



Why Early Stopping Works (2) 

outputs 

inputs 

W1

W2

•  When the weights are very 
small, every hidden unit is in its 
linear range. 
•  So a net with a large layer of 

hidden units is linear. 
•  It has no more capacity than 

a linear net in which the 
inputs are directly connected 
to the outputs! 

•  As the weights grow, the hidden 
units start using their non-linear 
ranges so the capacity grows. 

g a( ) = 1
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Regularization:  L2 Weight Penalty 
•  The standard L2 weight 

penalty involves adding an 
extra term to the cost 
function that penalizes 
the squared weights. 
•  This keeps the weights 

small unless they have 
big error derivatives.  
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Regularization:  Effect of L2 Penalty 
•  It prevents the network from using 

weights that it does not need. 
•  This can often improve 

generalization a lot because it 
helps to stop the network from 
fitting the sampling error.  

•  It makes a smoother model in 
which the output changes more 
slowly as the input changes.  

•  If the network has two very similar 
inputs it prefers to put half the 
weight on each rather than all 
the weight on one. 
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Regularization:  Other Penalties 
•  Sometimes it works better to 

penalize the absolute values of the 
weights. 
•  This can make many weights 

exactly equal to zero which 
helps interpretation a lot. 

•  Sometimes it works better to use a 
weight penalty that has negligible 
effect on large weights. 
•  This allows a few large weights. 
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•  We usually penalize the 
squared value of each 
weight separately. 

•  Instead, we can put a 
constraint on the maximum 
squared length of the 
incoming weight vector of 
each unit. 
•  If an update violates this 

constraint, we scale 
down the vector of 
incoming weights to the 
allowed length. 

•  Weight constraints have several 
advantages over weight penalties. 
•  Its easier to set a sensible value. 
•  They prevent hidden units getting 

stuck near zero. 
•  They prevent weights exploding. 

•  When a unit hits it’s limit, the effective 
weight penalty on all of it’s weights is 
determined by the big gradients.  
•  This is more effective than a fixed 

penalty at pushing irrelevant 
weights towards zero. 

Weight Penalties vs Weight Constraints 



•  Suppose we add Gaussian noise to the 
inputs. 
•  The variance of the noise is amplified by 

the squared weight before going into the 
next layer.  

•  In a simple net with a linear output unit 
directly connected to the inputs, the 
amplified noise gets added to the output. 

•  This makes an additive contribution to the 
squared error. 
•  So minimizing the squared error tends 

to minimize the squared weights when 
the inputs are noisy. 
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Regularization: L2 weight-decay via noisy inputs 
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Regularization: Dropout 
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•  An efficient way to combine neural nets models, without training 
many different models! 

•  Two classical ways to average models: 
MIXTURE: We can combine models by averaging their output 
probabilities. 

 
 
 
 

PRODUCT: We can combine models by taking the geometric means of 
their output probabilities. 

 



Regularization: Dropout 
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•  An efficient way to average many 
large neural nets. 

•  Consider a neural net with one 
hidden layer. 

•  Procedure: 
1.  Each time we present a 

training example, we 
randomly omit each hidden 
unit with probability 0.5. 

2.  So we are randomly 
sampling from 2^H 
different architectures. 

•  All architectures share 
weights. 



Dropout: Form of Model Averaging 
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•  We sample from 2^H models. So only a few of the models ever get 
trained, and they only get one training example. 
•  This is as extreme as bagging can get. 

 
•  The sharing of the weights means that every model is very strongly 

regularized. 
•  It’s a much better regularizer than L2 or L1 penalties that pull the 

weights towards zero. 
 
•  In test time: 

•  We could sample many different architectures and take the 
geometric mean of their output distributions. 

•  It better to use all of the hidden units, but to halve their outgoing 
weights. 
•  This exactly computes the geometric mean of the predictions of 

all 2^H models. 
 



Dropout for more hidden layers 
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•  Use dropout of 0.5 in every layer. 
•  At test time, use the “mean net” that has all the outgoing weights halved. 

•  This is not exactly the same as averaging all the separate dropped 
out models, but it’s a pretty good approximation, and its fast. 

•  Alternatively, run the stochastic model several times on the same input.  
•  This gives us an idea of the uncertainty in the answer. 

 



Dropout: how and why does it work? 
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•  The record breaking object recognition net developed by Alex Krizhevsky 
uses dropout and it helps a lot. 

 
•  Almost every deep network today uses dropout. 
 
•  If your deep neural net is significantly overfitting, dropout will usually 

reduce the number of errors by a lot. 
•  Any net that uses “early stopping” can do better by using dropout 
(at the cost of taking quite a lot longer to train).  

 
•  If your deep neural net is not overfitting you should be using a bigger one! 
•  Hidden units may co-adapt when it knows what other hidden units are 

present 
•  Dropout forces the units to do something individually useful and 

different than what the other hidden units are doing 
 



Dropout: Recurrent Networks 
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•  Deep recurrent neural networks also have high excess capacity and may 
overfit.   

•  Until recently, dropout was believed to  corrupt the information carried by 
recurrent networks and this makes it difficult for LSTMs to learn to store 
information for extended periods 

 

•  Wojciech et al. 2014 
determined that by applying 
Dropout only to non-recurrent 
connections, performance 
could be enhanced in deep 
recurrent neural networks 

•  Architecture, as shown to the 
right, reduced overfitting on a 
variety of tasks 



Regularization: Dropconnect 
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•  Generalization of Hinton’s Droput procedure, Dropconnect instead drops 
connections (weights), not entire activations (nodes) 

•  Wan et al, ICML 2014 showed that Dropconnect could lead to faster 
convergence than use of Dropout and that it often outperforms Dropout 

 


