
1

Regularization Techniques in Neural
Networks
William Fedus and Panqu Wang for Garrison
W. Cottrell and slides borrowed from Hinton
Gary's Unbelievable Research Unit (GURU)
Computer Science and Engineering Department
Temporal Dynamics of Learning Center
Institute for Neural Computation
UCSD

What is Overfitting
•  The training data contains information about the

regularities in the mapping from input to output. But it also
contains sampling error.
•  There will be accidental regularities just because of the

particular training cases that were chosen.
•  When we fit the model, it cannot tell which regularities are

real and which are caused by sampling error.
•  So it fits both kinds of regularity. If the model is very

flexible it can model the sampling error really well.
•  This means the model will not generalize well

to unseen data

2

Diagnosing Overfitting
•  Consider Training vs. Test Error as a function of training

iterations

3

High Bias High Variance
(Overfitting)

Preventing Overfitting
•  Approach 1: Get more data!

•  Almost always the best bet
if you have enough
compute power to train
on more data.

•  Approach 2: Use a model
that has the right capacity:
•  enough to fit the true

regularities.
•  not enough to also fit

spurious regularities (if
they are weaker).

•  Approach 3: Average many
different models.
•  Use models with different

forms.
•  Or train the model on

different subsets of the
training data (this is
called “bagging”).

4

Limiting Capacity of a Neural Net

5

•  The capacity can be controlled in many ways:
•  Architecture: Limit the number of hidden layers and

the number of units per layer.
•  Early stopping: Start with small weights and stop the

learning before it overfits.
•  Weight-decay: Penalize large weights using penalties

or constraints on their squared values (L2 penalty) or
absolute values (L1 penalty).

•  Noise: Add noise to the weights or the activities.
•  Typically, a combination of several of these methods is

used.

Choosing Hyperparameters
•  The wrong method is to try lots

of alternatives and see which
gives the best performance on
the test set.
•  This is easy to do, but it gives

a false impression of how
well the method works.

•  The settings that work best
on the test set are unlikely to
work as well on a new test
set drawn from the same
distribution.

•  An extreme example:
Suppose the test set has
random answers that do not
depend on the input.
•  The best architecture

will do better than
chance on the test set.

•  But it cannot be
expected to do better
than chance on a new
test set.

6

Cross-Validation for Hyperparameters

7

•  Divide the total dataset into three subsets:
•  Training data: is used for learning the parameters of the model.
•  Validation data: is not used for learning but is used for deciding

what settings of the meta parameters work best.
•  Test data: is used to get a final, unbiased estimate of how well the

network works. We expect this estimate to be worse than on the
validation data.

•  We could divide the total dataset into one final test set and N other
subsets and train on all but one of those subsets to get N different
estimates of the validation error rate.
•  This is called N-fold cross-validation.
•  The N estimates are not independent.

Prevent Overfitting with Early Stopping

8

•  If we have lots of data and a big model, its very
expensive to keep re-training it with different sized
penalties on the weights.

•  It is much cheaper to start with very small weights
and let them grow until the performance on the
validation set starts getting worse.
•  But it can be hard to decide when performance is getting

worse.
•  The capacity of the model is limited because the

weights have not had time to grow big.

Why Early Stopping Works (1)

outputs

inputs

W1

W2

•  So if we consider small
weights on Sigmoidal
hidden units

g()

Why Early Stopping Works (2)

outputs

inputs

W1

W2

•  When the weights are very
small, every hidden unit is in its
linear range.
•  So a net with a large layer of

hidden units is linear.
•  It has no more capacity than

a linear net in which the
inputs are directly connected
to the outputs!

•  As the weights grow, the hidden
units start using their non-linear
ranges so the capacity grows.

g a() = 1
1+ e−a

Regularization: L2 Weight Penalty
•  The standard L2 weight

penalty involves adding an
extra term to the cost
function that penalizes
the squared weights.
•  This keeps the weights

small unless they have
big error derivatives.

11

C = E + λ
2 wi

2

i
∑

∂C
∂wi

=
∂E
∂wi

+λwi

when ∂C
∂wi

= 0, wi = −
1

λ
∂E
∂wi

Regularization: Effect of L2 Penalty
•  It prevents the network from using

weights that it does not need.
•  This can often improve

generalization a lot because it
helps to stop the network from
fitting the sampling error.

•  It makes a smoother model in
which the output changes more
slowly as the input changes.

•  If the network has two very similar
inputs it prefers to put half the
weight on each rather than all
the weight on one.

12

w/2

w 0

w/2

Regularization: Other Penalties
•  Sometimes it works better to

penalize the absolute values of the
weights.
•  This can make many weights

exactly equal to zero which
helps interpretation a lot.

•  Sometimes it works better to use a
weight penalty that has negligible
effect on large weights.
•  This allows a few large weights.

13

•  We usually penalize the
squared value of each
weight separately.

•  Instead, we can put a
constraint on the maximum
squared length of the
incoming weight vector of
each unit.
•  If an update violates this

constraint, we scale
down the vector of
incoming weights to the
allowed length.

•  Weight constraints have several
advantages over weight penalties.
•  Its easier to set a sensible value.
•  They prevent hidden units getting

stuck near zero.
•  They prevent weights exploding.

•  When a unit hits it’s limit, the effective
weight penalty on all of it’s weights is
determined by the big gradients.
•  This is more effective than a fixed

penalty at pushing irrelevant
weights towards zero.

Weight Penalties vs Weight Constraints

•  Suppose we add Gaussian noise to the
inputs.
•  The variance of the noise is amplified by

the squared weight before going into the
next layer.

•  In a simple net with a linear output unit
directly connected to the inputs, the
amplified noise gets added to the output.

•  This makes an additive contribution to the
squared error.
•  So minimizing the squared error tends

to minimize the squared weights when
the inputs are noisy.

i

j

xi + N(0,σ i
2)

wi

yj + N(0,wi
2σ i

2)

Gaussian
noise

Regularization: L2 weight-decay via noisy inputs

ynoisy = wi
i
∑ xi + wiεi

i
∑ where εi is sampled from N(0,σ i

2)

because εi is independent of ε j
and εi is independent of (y− t)

E (ynoisy − t)2"
#

$
%= E y+ wiεi

i
∑ − t

'

(
))

*

+
,,

2"

#

-
-

$

%

.

.
= E (y− t)+ wiεi

i
∑

'

(
))

*

+
,,

2"

#

-
-

$

%

.

.

= (y− t)2 +E 2(y− t) wiεi
i
∑

#

$
%
%

&

'
(
(
+E wiεi

i
∑
)

*
++

,

-
..

2#

$

%
%

&

'

(
(

= (y− t)2 +E wi
2εi
2

i
∑
#

$
%
%

&

'
(
(

= (y− t)2 + wi
2σ i

2

i
∑

Derivation

Regularization: Dropout

17

•  An efficient way to combine neural nets models, without training
many different models!

•  Two classical ways to average models:
MIXTURE: We can combine models by averaging their output
probabilities.

PRODUCT: We can combine models by taking the geometric means of
their output probabilities.

Regularization: Dropout

18

•  An efficient way to average many
large neural nets.

•  Consider a neural net with one
hidden layer.

•  Procedure:
1.  Each time we present a

training example, we
randomly omit each hidden
unit with probability 0.5.

2.  So we are randomly
sampling from 2^H
different architectures.

•  All architectures share
weights.

Dropout: Form of Model Averaging

19

•  We sample from 2^H models. So only a few of the models ever get
trained, and they only get one training example.
•  This is as extreme as bagging can get.

•  The sharing of the weights means that every model is very strongly

regularized.
•  It’s a much better regularizer than L2 or L1 penalties that pull the

weights towards zero.

•  In test time:

•  We could sample many different architectures and take the
geometric mean of their output distributions.

•  It better to use all of the hidden units, but to halve their outgoing
weights.
•  This exactly computes the geometric mean of the predictions of

all 2^H models.

Dropout for more hidden layers

20

•  Use dropout of 0.5 in every layer.
•  At test time, use the “mean net” that has all the outgoing weights halved.

•  This is not exactly the same as averaging all the separate dropped
out models, but it’s a pretty good approximation, and its fast.

•  Alternatively, run the stochastic model several times on the same input.
•  This gives us an idea of the uncertainty in the answer.

Dropout: how and why does it work?

21

•  The record breaking object recognition net developed by Alex Krizhevsky
uses dropout and it helps a lot.

•  Almost every deep network today uses dropout.

•  If your deep neural net is significantly overfitting, dropout will usually

reduce the number of errors by a lot.
•  Any net that uses “early stopping” can do better by using dropout
(at the cost of taking quite a lot longer to train).

•  If your deep neural net is not overfitting you should be using a bigger one!
•  Hidden units may co-adapt when it knows what other hidden units are

present
•  Dropout forces the units to do something individually useful and

different than what the other hidden units are doing

Dropout: Recurrent Networks

22

•  Deep recurrent neural networks also have high excess capacity and may
overfit.

•  Until recently, dropout was believed to corrupt the information carried by
recurrent networks and this makes it difficult for LSTMs to learn to store
information for extended periods

•  Wojciech et al. 2014
determined that by applying
Dropout only to non-recurrent
connections, performance
could be enhanced in deep
recurrent neural networks

•  Architecture, as shown to the
right, reduced overfitting on a
variety of tasks

Regularization: Dropconnect

23

•  Generalization of Hinton’s Droput procedure, Dropconnect instead drops
connections (weights), not entire activations (nodes)

•  Wan et al, ICML 2014 showed that Dropconnect could lead to faster
convergence than use of Dropout and that it often outperforms Dropout

