
CS 586/486 Fall 2015, Lecture Notes 5

1

Week 5
- Translating an ER Diagram to a

Relational Schema
- Embedded SQL

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015
Some slides adapted from R. Ramakrishnan, with permission Lecture 5

1

Converting ER to Relational Schema

Project
P-number
P-name
Due-Date

Employee
SSN
E-Name
Office

0..* Assignment 0..*

0..* Manager 1..1

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

2

1. Translate each entity set into a
table, with keys.

• Entity set:
– can be represented

as a table in the
relational model

– has a key … which
becomes a key for
the table

CREATE TABLE Employee
(SSN CHAR(11) NOT NULL,
E-Name CHAR(20),
Office INTEGER,
PRIMARY KEY (SSN))

Employee

SSN
E-Name

Office

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

3

Multi-valued Attribute

Didn’t see this case when discussing ER
diagrams
One or more values of same attribute for an entity

Employee

SSN Office
E-Name

Office Office

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

4

CS 586/486 Fall 2015, Lecture Notes 5

2

How many offices can one employee have?

Project(P-number, P-name, Due-Date)
Employee(SSN, E-Name, Office)

vs.
Project(P-number, P-name, Due-Date)
Employee(SSN, E-Name)
Office-Assignment(SSN, Office)

Most relational DBMSs do not allow multi-
valued attributes.
2. Create a table for the multi-valued attribute.

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015
Some slides adapted from R. Ramakrishnan, with permission Lecture 5

5

Project(P-number, P-name, Due-Date)
Employee(SSN, E-Name, Office)

12 Smith O-105
15 Wei O-110

Project(P-number, P-name, Due-Date)
Employee(SSN, E-Name)

12 Smith
15 Wei

Office-Assignment(SSN, Office)
12 O-105
12 O-106
15 O-110

Sample Data

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

6

3. Translate each many-to-many relationship set
into a table

What are the attributes and what is the key for Assignment?

Project(P-number, P-name, Due-Date)
Employee(SSN, E-Name, Office)

Project
P-number
P-name
Due-Date

Employee
SSN
E-Name
Office

0..* Assignment 0..*

0..* Manager 1..1

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015
Some slides adapted from R. Ramakrishnan, with permission Lecture 5

7

Answer: Assignment(P-Number, SSN)

P-Number is a foreign key for Project
SSN is a foreign key for Employee

Project(P-Number, P-Due-Date)
Employee(SSN, E-Name, Office)

Project
P-number
P-name
Due-Date

Employee
SSN
E-Name
Office

0..* Assignment 0..*

0..* Manager 1..1

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

8

CS 586/486 Fall 2015, Lecture Notes 5

3

What should we do with each one-to-many relationship set?

Manager (?)

Project(P-number, P-name, Due-Date)
Employee(SSN, E-Name, Office)

Project
P-number
P-name
Due-Date

Employee
SSN
E-Name
Office

0..* Assignment 0..*

0..* Manager 1..1

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015
Some slides adapted from R. Ramakrishnan, with permission Lecture 5

9

Project(P-number, P-name, Due-Date, MgrSSN)
Employee(SSN, E-Name, Office)

4. Create a foreign key for a 1-to-many relationship set.

MgrSSN is a foreign key (referencing the Employee relation)

value of Manager must match an SSN

Project
P-number
P-name
Due-Date

Employee
SSN
E-Name
Office

0..* Assignment 0..*

0..* Manager 1..1

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015
Some slides adapted from R. Ramakrishnan, with permission Lecture 5

10

Project(P-number, P-name, Due-Date, MgrSSN)
Employee(SSN, E-Name, Office)

vs.
4. Or...Create a table for a 1-many relationship set.

Project(P-number, P-name, Due-Date)
Employee(SSN, E-Name, Office)

Manager(P-number, SSN)
What are the tradeoffs between these two?

Note:
P-number
is the key
for Manager

Project
P-number
P-name
Due-Date

Employee
SSN
E-Name
Office

0..* Assignment 0..*

0..* Manager 1..1

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015
Some slides adapted from R. Ramakrishnan, with permission Lecture 5

11

What do we do when a many-to-many
relationship set has an attribute?

Assignment(P-number, SSN)
Project(P-number, P-name, Due-Date)
Employee(SSN, E-Name, Office)

Project
P-number
P-name
Due-Date

Employee
SSN
E-Name
Office

Assignment

role
start-date
end-date

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015
Some slides adapted from R. Ramakrishnan, with permission Lecture 5

12

CS 586/486 Fall 2015, Lecture Notes 5

4

What do we do when a many-to-many
relationship set has an attribute?

Assignment(P-number, SSN, role, start-date, end-date)
Project(P-number, P-name, Due-Date)
Employee(SSN, E-Name, Office)

Project
P-number
P-name
Due-Date

Employee
SSN
E-Name
Office

Assignment

role
start-date
end-date

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015
Some slides adapted from R. Ramakrishnan, with permission Lecture 5

13

What do we do when a 1-to-many
relationship set has an attribute?

Project(P-number, P-name, Due-Date, MgrSSN)
Employee(SSN, E-Name, Office)

Employee
SSN
E-Name
Office

Manager

start-date
end-date

Project
P-number
P-name
Due-Date

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015
Some slides adapted from R. Ramakrishnan, with permission Lecture 5

14

What do we do when a 1-to-many
relationship set has an attribute?

Project(P-number, P-name, Due-Date, MgrSSN,
start-date, end-date)

Employee(SSN, E-Name, Office)

Employee
SSN
E-Name
Office

Manager

start-date
end-date

Project
P-number
P-name
Due-Date

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015
Some slides adapted from R. Ramakrishnan, with permission Lecture 5

15

Weak Entity Sets

Policy
dep-name
cost

Insures

strong
entity
set

identifying
relationship

set

weak
entity
set

Employee
SSN
name
office

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

16

CS 586/486 Fall 2015, Lecture Notes 5

5

Translating Weak Entity Sets

• Weak entity sets and identifying relationship sets
are translated into a single table. Must include
key of strong entity set, as a foreign key.

• When the owner entity is deleted, all owned weak
entities must also be deleted.

CREATE TABLE Insurance_Policy (
dep-name CHAR(20),
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (dep-name, ssn),

FOREIGN KEY (ssn) REFERENCES Employee,
ON DELETE CASCADE)

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

17

ER to Tables, Method 1
• Create table and choose key for each entity set; include single-

valued attributes.

• Create table for each weak entity set; include single-valued
attributes. Include key of owner as a foreign key in the weak
entity. Set key as foreign key of owner plus local, partial key.

• For each 1:1 relationship set, add a foreign key to one of the
entity sets involved in the relationship (a foreign key to the other
entity in the relationship)*.

• For each 1:N relationship set, add a foreign key to the entity set
on the N-side of the relationship (to reference the entity set on the
1-side of the relationship)*.

* Unless relationship set has attributes. If it does, create a new table
for the relationship set.

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

18

ER to Tables, Method 1
• For each M:N relationship set, create a new table. Include a

foreign key for each participant entity set, in the relationship set.
The key for the new table is the set of all such foreign keys.

• For each multi-valued attribute, construct a separate table.
Repeat the key for the entity in this new table. It will serve as a
foreign key to the original table for the entity. The new key of the
table will be the key of the entity plus the attribute.

This algorithm from Elmasri & Navathe, Fundamentals of Database
Systems

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

19

ER to Tables, Method 2 (Book)
For regular entities and relationships (not weak/identifying)

• Create a table for each entity; include all attributes
• Create a table for each relationship; include attributes to

represent the key for every participant in the relationship.

Not mentioned in the book (but important): Choose the key
for each table.

• Easy for tables for entities
• Not as easy for tables that represent relationships

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

20

CS 586/486 Fall 2015, Lecture Notes 5

6

ER to Tables, Method 2 (Book)
For a weak entity and the identifying relationship

• Table for the weak entity must include the key from the
strong entity in the identifying relationship (plus all
attributes directly in the weak entity)

• Identifying relationships do NOT need tables.
• Other relationships involving the weak entity must use

the concatenation of the partial key for the weak entity
plus the key from the corresponding strong entity.

The key for the weak entity must be the partial key, plus the
key of the corresponding strong entity.

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

21

ER to Tables, Method 2 (Book)
Then … combine tables

• If you have two or more tables with the same key … then
combine them into one table.

• What’s happening is that if the entity participates in a
relationship where there is at most one of the other entity,
the relationship can be represented as a foreign key.

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

22

Embedded SQL: What and Why?

• Embedded SQL allows data from a DBMS to
be accessed programmatically

• Embedded SQL Programmers can:
– Control how data is presented to users
– Control what data is visible to users
– Generate SQL dynamically based on user inputs

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

23

When are Queries Analyzed?

At compile time: Static SQL

At run time: Dynamic SQL

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

24

CS 586/486 Fall 2015, Lecture Notes 5

7

Static Case

• SQL commands are embedded in program with
some kind of special delimiters

• Use a pre-processor that recognizes the SQL
parts of the program

• Prepare once, execute many times
• Need a way to pass parameters to query
• Know schema of the result of a SELECT

statement in advance

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

25

Dynamic Case
• Create a string at run time that represents

the query
• Use function calls or methods to pass the

string to the DBMS
(no preprocessing of program)

• Analyze and execute the query each time
• Need a way to discover the schema of the

result

Note: Some languages support both static and
dynamic cases

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

26

Embedded SQL

• SQL commands can be called from within a host
language (e.g., C/C++, Basic, .NET, PHP) program.
– SQL statements can refer to host variables (including

special variables used to return status).
– Must include a statement to connect to the right

database.

• SQL relations are (multi-) sets of records, with no
a priori bound on the number of records. No such
data structure in most languages.
– SQL supports a mechanism called a cursor to handle this.

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

27

Cursors

• Can declare a cursor on a table or query
statement (which generates a relation).

• Can open a cursor, and repeatedly fetch a row
(then move the cursor), until all rows have been
retrieved.

• May also be possible to modify/delete row
pointed to by a cursor.

• Cursor can report conditions (e.g., end of rows)

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

28

CS 586/486 Fall 2015, Lecture Notes 5

8

Embedded SQL Implementations

• We will discuss four implementations of
Embedded SQL
– C (Pro*C from Oracle is an example)
– Java (Using JDBC)
– C# .NET (Using ADO to talk to MS Access)
– Scripting (Using PHP & PostgreSQL)

Illustrates database-backed web pages.

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

29

Example Table Schema

Imagine we are tracking products and
categories for a retailer

Products(int ProductID,
int CategoryID, String ProductName,
currency UnitPrice)

Categories(int CategoryID,
String CategoryName)

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

30

Cursor that gets the name and unit price of all
beverages

DECLARE pinfo CURSOR FOR

SELECT P.ProductName, P.UnitPrice
FROM Products P, Categories C
WHERE C.CategoryName=“Beverages”

AND P.CategoryID=C.CategoryID
ORDER BY P.UnitPrice;

OPEN pinfo;

FETCH pinfo INTO :p-name, :p-price;
(probably for each row)

CLOSE pinfo;

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

31

Embedding SQL in C: An Example
void ListProducts(short Max)
{

char SQLSTATE[6];

EXEC SQL BEGIN DECLARE SECTION
char ProductName[20];
float ProductPrice;
short MaxPrice = Max;

EXEC SQL END DECLARE SECTION

SQLSTATE holds the return value – can tell if more results, among
other things

EXEC SQL denotes embedded SQL section – flag for preprocessor

DECLARE SECTION binds variables into SQL

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

32

CS 586/486 Fall 2015, Lecture Notes 5

9

Embedding SQL in C: (continued)
EXEC SQL DECLARE pinfo CURSOR FOR

SELECT P.ProductName, P.UnitPrice
FROM Products P, Categories C
WHERE C.CategoryName="Beverages"

AND P.UnitPrice < :MaxPrice
AND P.CategoryID=C.CategoryID

ORDER BY P.UnitPrice;

DECLARE pinfo CURSOR defines a name for this query for later use

SELECT P.ProductName … is our SQL that we want results on

< :MaxPrice - Note the use of a variable, defined earlier

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

33

Embedding SQL in C: (continued)
EXEC SQL OPEN pinfo;
EXEC SQL FETCH pinfo INTO :ProductName, :ProductPrice;
while (SQLSTATE != "02000") {

printf("%s costs %f each\n", ProductName,
ProductPrice);
EXEC SQL FETCH pinfo INTO :ProductName, :ProductPrice;

};
EXEC SQL CLOSE pinfo;

OPEN pinfo – opens the query we are interested in

FETCH pinfo INTO – assigns data into our variables, for use in the output

ProductName – Use of our variable in and out of SQL EXEC

CLOSE pinfo – We’re done with the cursor, free up its resources

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

34

Embedded SQL in Java

• Exposed through libraries called JDBC (Java
DataBase Connectivity

• Using package java.sql.*
• All of the principles of cursors still apply

– They are now encapsulated in object methods
• A Java Cursor is called a ResultSet Object
• Column names and positions are stored in a

ResultSetMetaData object

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

35

Embedded SQL in Java

try {
Connection connect =

DriverManager.getConnection(“jdbc:mysql:
www.mydomain.com:12543/mydb”, username,
password);

Statement st = connect.createStatement ();
}

catch (Exception e) {
… exception thrown because connection failed …

}

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

36

CS 586/486 Fall 2015, Lecture Notes 5

10

Embedding SQL in Java: An Example

boolean status = st.execute (“SELECT * FROM
Products”);

if (status) {
ResultSet rset = st.getResultSet ();
ResultSetMetaData meta = rset.getMetaData ();
… do stuff …}

else { … query did not return rows … }

rset – The Cursor Object (Recordset)

meta – the collection of columns and column positions for the records

else – the query may have been an insert, update, delete command

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

37

Metadata and ResultSet Objects

int nColumns = meta.getColumnCount();
String columnName = meta.getColumnLabel(i);
int columnWidth = meta.getColumnDisplaySize(i);

while (rset.next ()) {

…

Object val = rset.getObject (i);

// getString, getBoolean, etc.

rset.updateObject (i, obj);

// updateString, updateBoolean, etc.

…}

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

38

Embedding SQL in Java: An Example (continued)

rset.close ();

connect.close ();

• Don’t forget to free up resources (result sets, connections)

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

39

Embedded SQL in .NET

• Exposed through the libraries System.Data.*
– We’ll focus on System.Data.OleDb

• Can be used in the Microsoft .NET
framework (Basic, C#, Managed C++, JScript)
– We’ll use C#

• Object-Oriented
• A Cursor is a OleDbDataReader Object
• LINQ is another technology for connecting

to data sources

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

40

CS 586/486 Fall 2015, Lecture Notes 5

11

Embedded SQL in .NET (C#)

OleDbCommand myCmd = new OleDbCommand
("SELECT P.ProductName, P.UnitPrice " +
"FROM Products P, Categories C " +
"WHERE P.CategoryID=C.CategoryID " +
"AND C.CategoryName = \"Beverages\" " +
"ORDER BY P.UnitPrice", myConn);

OleDbDataReader myRdr = myCmd.ExecuteReader();

Object name = myRdr.GetValue(0);

myRdr.Close();

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

41

Embedded SQL in .NET (C#): An Example

void ListProducts(int MaxPrice)
OleDbCommand myCmd = new OleDbCommand();

try {
myCmd.Connection = new OleDbConnection(

"Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=products.mdb");

myCmd.Connection.Open();

ListProducts(int MaxPrice) – definition of this subroutine

myCmd – The Command object to execute the SQL

new OleDb Connection – Opens the Access Database products.mdb

myCmd.Connection – Assigns a connection to the command

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

42

Embedded SQL in .NET (C#): An Example (continued)

myCmd.CommandText = "SELECT P.ProductName, P.UnitPrice " +
"FROM Products P, Categories C " +
"WHERE P.UnitPrice < " + MaxPrice +

" AND C.CategoryName = \"Beverages\" " +
" AND P.CategoryID = C.CategoryID " +

"ORDER BY P.UnitPrice";

OleDbDataReader myRdr = myCmd.ExecuteReader();

myCmd.CommandText – Assign the desired SQL query
myRdr = myCmd.ExecuteReader() – Open a cursor on the SQL

"P.UnitPrice < " + MaxPrice - Use a variable defined in C#

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

43

Embedded SQL in .NET (C#): An Example (continued)

while (myRdr.Read()) {
Console.WriteLine(myRdr.GetString(0) + " costs $" +

myRdr.GetDecimal(1) + " each“);
}

} //end try

while (myRdr.Read()) – Read gets the next record. If it’s after the last
record, Read() returns False
myRdr.Get***** - OleDbDataReader provides many Get functions to
retrieve different data types. GetFieldType() returns the types for each
attribute, if they are not already known

Console.WriteLine – Write to the command window

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

44

CS 586/486 Fall 2015, Lecture Notes 5

12

Embedded SQL in .NET (C#): An Example (continued)

catch (Exception ex) {
Console.WriteLine(ex.Message);

}

catch – catches any exception that is thrown during execution
Message is a member of the Exception object.

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

45

Embedded SQL using PostgreSQL and PHP

• Scripting languages such as Perl, Python, and
PHP have database support
– We’ll talk some about PHP next Thursday

• To work with a PostgreSQL database in a
scripting language, you must use a set of
functions designed to communicate with
PostgreSQL

• PHP includes the PostgreSQL functions - you
do not need an additional library

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

46

Other Embedded SQL Solutions

• ODBC – Open Database Connectivity
– Old standard, proposed by Microsoft but driven by

the database community
– Many vendors, including Oracle, make ODBC

drivers available
• Haskell

– HaskellDB (currently uses ADO)
– Cursors are first-class objects (each attribute is a

type)

CS486/586 Introduction to Database Systems, © Lois Delcambre, David Maier 1999-2015 Some slides
adapted from R. Ramakrishnan, with permission Lecture 5

47

