
published on Novermber 15, 2015

Programming Languages: Assignment #3

Due December 1, 2015 at 11pm

1

Programming Languages: 89-310 Assignment #3

Description

In this assignment you are requested to implement a simple language with integers and arrays. You will

practice in this assignment with flex and bison. Most of the work of this assignment should be done by flex

and bison, in other words, the lesser C/C++ code the better your work is.

Definitions

Whitespace:

’ ’ (space), \t or (tab)

End of line (EOL):

\n

Types

Integer

Integer literal has multiple representations:

1. Decimal: a sequence of digits (at least one). For example: 13. If the sequences length is more than 1

than the first character cannot be 0, i.e., 06 is NOT a valid integer number.

2. Hexadecimal: a sequence of 0x followed by a non empty sequence of [0− 9a− fA− F]. For example:

0x13a (= 314), 0x012F (= 303).

3. Binary: The sequence of 0b followed by a non empty sequence of 0|1. For example: 0b1010 (= 5),

0b010 (= 2).

Array

The type of elements in array is limited only to integer. Array literal:

1. Empty array: [] or nil.

2. Non-empty array: array elements enclosed by square brackets and separated by commas. Example:

[1, 2, 3], [1 + 1, 2 ∗ 5] (= [2, 10]).

2

Programming Languages: 89-310 Assignment #3

Operators

Table 1: Integer Operations

Priority Character Description Association

Highest () Grouping

~ $ self decrement (~), increment ($)

^ Power right

- + Unary Operations

* / Multiplication, Division left

+ - Addition and Subtraction left

== != < > <= >= Comparison operators

&& Logic And left

Lowest || Logic Or left

Remarks:

1. ^ is power operator (e.g. 2^3 = 8). You can assume the exponent is always positive integer (including

0).

2. The ~, $ operation are the equivalent of --, ++ in C/C++, respectively. Can operate only on variables.

3. For the comparison and logical operations integral, value ! = 0 means true and == 0 false.

4. In / (division) you need to check for zero division. Also, always use floor for division (e.g. 2/3 = 0).

5. Evaluating Boolean arithmetic is according to short circuit rule

(a) expr1 && expr2: if expr1 is false, then expr2 is not exaluated.

(b) expr1 || expr2: if expr1 is true, then expr2 is not exaluated.

Integer/char operations examples

1 + 3 ∗ 5ˆ2 # = 76

(1 + 0x3 ∗ 5)ˆ2 # = 256

1 / 2 + 0b101 # = 5

−2 − 5 # = −7
−2 − − 5 # = 3

−2 − − −5 # = −7
−2 + + −5 # = −7
11 == 1 + 6 # = 0 (f a l s e)

11 == 5 + 6 # = 1 (t rue)

6 && 5 # = 1

6 && 5 && 0 # = 0

6 && 5 | | 0 # = 1

−6 && (5 | | 0) # = 1

3

Programming Languages: 89-310 Assignment #3

Table 2: Array Operations

Priority Character Description Association

Highest () Grouping

:: Appends an element to the beginning of an array right

<< Appends an element to the end of an array left

[] Range Operator left

Lowest @ Concatenate 2 arrays left

The operator {} is used to access to an element in an array. For example [10,20,30]{1} returns 20.

Array operations examples

[1 , 2 , 3] @ [4 , 5] # = [1 ,2 , 3 , 4 , 5]

[1 , 2 , 3]{0} # = 1

[1 , 2 , 3]{2} # = 3

[1 , 2 , 3]{3} # error (out o f array range)

n i l # = []

1 : : n i l # = [1]

1 : : 2 : : 3 : : n i l # = [1 , 2 , 3]

[]<<1<<2<<3 # = [1 , 2 , 3]

[1 , 2 , 3 , 4 , 5] [1 . . 3] # = [2 , 3 , 4] (r e turns e lements from 1 to 3 , i n c l ud i n g 3)

[1 , 2 , 3 , 4 , 5] [1 . . < 3] # = [2 , 3] (r e turns e lements from 1 to 3 , e x c l ud ing 3)

1: : [2 ,3 ,4] <<5 # = [1 ,2 , 3 , 4 , 5] (no t i c e t ha t ” : : ” i s app l i e d f i r s t)

1 : : [2 , 3 , 4] [1 . . 2] < < 4 [0 . . 1] # = [2 , 3]

[1] @ [2]<<5 @ 0 : : [3] # = [1 ,2 , 5 , 0 , 3]

Remarks:

1. Notice that [1,2,3]{0} returns int, while [1,2,3][0..0] returns array

2. Range access operator receives integer literals only (e.g. [1,2,3][0..(1+1)] is illegal).

Variables

The syntax for declaring a variable is: var <VAR_NAME> = expr.

Right-hand expr might be of type int or array.

Variable name <VAR_NAME> is composed of the following characters:’a’-’z’, ’0’-’9’ and ’_’ (i.e., a com-

position of lower case letters, digits and underscore). A variable name must begin with a letter. Examples of

valid names are: "var24", "t", "myvar". Examples of invalid names are: "88", "69_", "aFG", "K", "8i".

Examples

var x = 99

var y = 9 ∗ 5

var ar r = [1 , 2]

var a = [1 , 2] @ [3]

4

Programming Languages: 89-310 Assignment #3

Alternatively, a variable can be declared along with its type. The syntax for declaring a variable with a

type is: <TYPE> <VAR_NAME> = expr, where <TYPE> is int or Array. The left-hand side type must match

the type of the right-hand side expression.

Examples

int x = 99 # OK

var xx = [] # OK

Array a = [] # OK

int y = [] # error !

Array z = 1 # error !

The syntax for variable assignment is: <VAR_NAME> = expr. Notice that in assignment the left-hand side

variable must be previously declared and its type must match the type of the right-hand side expression.

Examples

int x = 99

var y = 100

x = 15 # now x equa l s to 15

y = 16 # OK, the type o f ’ y ’ i s i n t

x = [] # error !

Whitespace

Whitespace ’ ’ (space) or \t (tab) are ignored (only useful to separate tokens).

If-else expression

The syntax for if-then-else is: if int_expr then int_expr else int_expr. In case the int_expr after

the ’if’ keyword is evaluated to 1 (true) the expression for ’then’ is evaluated, otherwise the int_expr for

the ’else’ is evaluated. An If-then expression (i.e. without else) is not supported.

i f 1 then 2 else 3 # = 2

i f 0 then 2 else 3 # = 3

i f 0 then 1 else i f 0 then 2 else 4 # = 4

i f 1 then i f 0 then 2 else 3 else 4 # = 3

The precedence of if-then-else is the lowest (in other words the precedence of the ’else’ token is the lowest).

i f 1 then 2 else 2 | | 3 # = i f 1 then 2 e l s e (2 | | 3) = 2

i f 1 then 1 else 2 + 3 # = i f 1 then 1 e l s e (2 + 3) = 1

(i f 1 then 1 else 2) + 3 # = 4

Notice that if, for example, the ”then-expression” is evaluated, it follows that the ”else-expression” must not

be evaluated.

var i = 0

i f 1 then $ i else ˜ i # i = 1

5

Programming Languages: 89-310 Assignment #3

Output

Each line of expression or statement ends by ’\n’ or ’;’. Only lines that are ended with ’\n’ are outputted.

Expressions that end with ’;’ are not outputted even if after ’;’ a ’\n’ is followed. Empty lines that contain

only ’\n’ or ’;’ are OK (no error and no feedback).

Print int expression

Format: it=<int expression>

1 + 5 * 1

it=6

Print array expression

Format: it=[e1,e2,...,e_n] (no space between commas)

[1,2 + 3]

it=[1,5]

[1,2] @ [3,4]

it=[1,2,3,4]

Print variable declaration/assigment

Format: <var name>=<expression>

var x = 12 * 3 +5

x=41

x = 99

x=99

var y = x * 2

y=198

var arr = [1,2,3]

arr=[1,2,3]

Array a = [1,2,4]

a=[1,2,4]

Handling Errors

Error may occur:

• Illegal syntax (discovered by flex/bison)

• Duplicate declaration of a variable

• Using undefined variable in expression or assignment

• Left-hand side variable type does not match right-hand side expression

• Zero division

• Out of range array access

6

Programming Languages: 89-310 Assignment #3

• Using $ or ~ on non-variable

Lines that produce feedback are printed regularly until an error discovered. On error, just print ”error” and

exit.

More Examples

var x = 0

x=0

if x then $x else ~x;x

it=-1

if x then $x else ~x;x

it=0

$x && $x; x

it=2

x=0;x$ && $x; x

it=1

if if 1 then 1 else 0 then 1 else 2

it=1

int y= 1; x=2;([x,y, x+y] @ 0::[1,-2^3]<<5)

it=[2,1,3,0,1,-8,5]

7

Programming Languages: 89-310 Assignment #3

Submission Notes

• Assignment name: Ex3

• Assignment weight: 24%

• The assignment should run on the department computer: u2

• Submission via ‘submit‘ system (submit.cs.biu.ac.il).

• You must supply (at least) the following files: makefile, ex3.lex ex3.y

• At the head of your Flex/Bison files, add a remark with your: name, ID, group, user-name

• The running executable must bear the name: a.out

General Notes

1. You can use (and it’s recommended) C/C++ standard libraries (e.g. C++ STL: string, set, map,

vector, etc.). Normally, the libraries are used for the grammar semantic (i.e. the actions callback),

which should be kept minimal (most of your work is to define Flex/Bison rules).

2. Do try and write lots of test cases and check your work. The one supplied by me, does not pretend to

check even 1.78% of what you will be checked later (after the deadline).

3. You can look at the make file at the end of the PPT #3

4. You may consult others (friends, internet, etc...) but copying or communal work is forbidden. Please

do not plagiaries. We make all effort to catch such cases.

5. Some characters are different between Linux and Windows OS (e.g., EOL). Thus, when you write

your own test files, dont forget to ‘dos2unix‘ when migrating them from your Win platform to Planets

Linux.

6. For Boolean arithmetic and if-then-else this may help you: Section [3.4.8] ‘Actions in Mid-Rule‘:

http://www.gnu.org/software/bison/manual/bison.html

7. You may consult others (friends, internet, etc...) but copying or communal work is forbidden. Please

do not plagiarize. We make all effort to catch such cases (remember, we have accumulated students

work for already 5 years).

8. It is a long assignment (definition and implementation). Please read it carefully. Also, make sure to

get update on the Q & A.

9. See the published input/output examples. Your grade should be (at least) 100 on those. Later, when

coming to grade you, we will use a different, larger and much more vicious test files.

8

