
II. Instructions Sets
Computer Architecture

TDTS10
Ahmed Rezine

(Based on slides of Unmesh D. Bordoloi)

Components of a Computer

Computer Architecture (TDTS10 – HT15)

Hierarchical Layers of Program Code

Computer Architecture (TDTS10 – HT15)

Instruction Set

  The repertoire of instructions of a computer

  Computers can implement the same instruction set in
different manners

  Instruction sets can be quite different, but they have
many aspects in common

Computer Architecture (TDTS10 – HT15)

The MIPS Instruction Set

  Used as the example throughout the book

  Stanford MIPS commercialized by MIPS
Technologies (www.mips.com) in the 80s

  Large share of embedded core market
  Applications in consumer electronics, network/

storage equipment, cameras, printers, …

  Typical of many modern ISAs

Computer Architecture (TDTS10 – HT15)

Instruction Set

  Stored-program concept
  The idea that instructions and data of many types can

be stored in memory as numbers, leading to stored-
program computer

  Let us look into MIPS instruction set one by one to
understand this

Computer Architecture (TDTS10 – HT15)

Arithmetic Operations

  Add and subtract, three operands
  Two sources and one destination

 add a, b, c

 # a gets b + c

Computer Architecture (TDTS10 – HT15)

Arithmetic Operations

  Operand is a quantity on which an operation is performed

 add a, b, c

  How many operands in this instruction?

  All arithmetic operations have this form

Computer Architecture (TDTS10 – HT15)

Design Principle 1

  All arithmetic operations have same form

  Design Principle 1: Simplicity favors regularity
  Regularity makes hardware implementation simpler

Computer Architecture (TDTS10 – HT15)

Arithmetic Example
  C code:

 f = (g + h) - (i + j);

  Compiled MIPS code: ?

  Hints:
  Use sub instructions, e.g., a=b-c, is sub a,b,c
  Use two temporary variables t0 and t1

Computer Architecture (TDTS10 – HT15)

Arithmetic Example

  C code:

 f = (g + h) - (i + j);

  Compiled MIPS code:

 add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Computer Architecture (TDTS10 – HT15)

Register Operands

  The operands of arithmetic instructions must
be from special location in hardware called
registers

  Registers are primitives of hardware design and
are visible to programmers

Computer Architecture (TDTS10 – HT15)

Register Operands

  Assembler names
  $t0,	
 $t1,	
 …,	
 $t9 for temporary values
  $s0,	
 $s1,	
 …,	
 $s7 for saved variables

Computer Architecture (TDTS10 – HT15)

Register Operand Example

  Compiler’s job to associate variables of a high-level program
with registers

  C code:

 f = (g + h) - (i + j);
  f, …, j in $s0,	
 …,	
 $s4	

  Compiled MIPS code ?

Computer Architecture (TDTS10 – HT15)

Register Operand Example

  Compiled MIPS code:

 add	
 $t0,	
 $s1,	
 $s2	

add	
 $t1,	
 $s3,	
 $s4	

sub	
 $s0,	
 $t0,	
 $t1	

Computer Architecture (TDTS10 – HT15)

Register Operands

  MIPS has a 32 × 32-bit register file
  Numbered 0 to 31
  32-bit data called a “word”

  Word is the natural unit of access, typically 32 bits,
corresponds to the size of a register in MIPS

  There may be only 3 operands and they must be
chosen from one of the 32 registers. Why only 32 ?

Computer Architecture (TDTS10 – HT15)

§2.3 O
perands of the C

om
puter H

ardw
are

Design Principle 2

  Smaller is faster
  Larger registers will increase clock cycle time ---

electronic signals take longer when they travel
farther

  Design principles are not hard truths but general
guidelines
  31 registers instead of 32 need not make MIPS faster

Computer Architecture (TDTS10 – HT15)

Memory Operands

  Programming languages, C, Java, …
  Allow complex data structures like arrays and lists
  More data elements than the number of registers in a

computer
  Where are they stored ?

  But, arithmetic operations are applied on register
operands

  Hence, data transfer instructions are required to
transfer data from memory to registers
  Load values from memory into registers
  Store result from register to memory

Computer Architecture (TDTS10 – HT15)

!  Memory is like an array
!  Data transfer instructions must supply the address

(index/offset) of the memory (array)

Computer Architecture (TDTS10 – HT15)

Memory Operands

  Memory is byte addressed
  Each address identifies an 8-bits byte

  Words are aligned in memory
  Each word is 32 bits or 4 bytes
  To locate words, addresses are in multiples of 4

Computer Architecture (TDTS10 – HT15)

  A is an array of words

  What is the offset to locate A[8] ?
  A[0] – 0
  A[1] – 4
  A[2] – 8
  …
  A[8] – 32

Computer Architecture (TDTS10 – HT15)

Memory Operands

  Why is memory not word-addressable?

Computer Architecture (TDTS10 – HT15)

Memory Operands

Why is memory not word-addressable?

  Bytes are useful in many programs.

  In a word addressable system, it is necessary to:
  compute the address of the word containing the byte,
  fetch that word,
  extract the byte from the two-byte word.

  Although the processes for byte extraction are well understood,
they are less efficient than directly accessing the byte.

  For this reason, many modern machines are byte addressable.

Computer Architecture (TDTS10 – HT15)

Memory Operands - lw
  Load instruction

  lw refers to load word

  lw registerName, offset (registerWithBaseAddress)

  lw	
 $t0	
 ,	
 8	
 ($s3)	

offset base register

Computer Architecture (TDTS10 – HT15)

Memory Operand Example 1
  C code:

 g = h + A[8];
  g in $s1	

  h in $s2	

  base address of A in $s3	

  A is an array of 100 words

  Compiled MIPS code ?

Computer Architecture (TDTS10 – HT15)

Memory Operand Example 1

  C code:

 g = h + A[8];
  g in $s1, h in $s2, base address of A in $s3	

  Compiled MIPS code:

 lw	
 	
 $t0,	
 32($s3)	
 	
 	
 	
 # load word
add	
 $s1,	
 $s2,	
 $t0	

Computer Architecture (TDTS10 – HT15)

offset base register

Memory Operands - sw
  Store instruction

  sw refers to store word

  sw registerName, offset (registerWithBaseAddress)

  sw	
 $t0,	
 8	
 ($s3)	

offset base register

Computer Architecture (TDTS10 – HT15)

Memory Operand Example 2

  C code:

 A[12] = h + A[8];
  h in $s2, base address of A in $s3	

  Compiled MIPS code:

Computer Architecture (TDTS10 – HT15)

Memory Operand Example 2

  C code:

 A[12] = h + A[8];
  h in $s2, base address of A in $s3

  Compiled MIPS code:
  Index 8 requires offset of 32

 lw	
 	
 $t0,	
 32($s3)	
 	
 	
 	
 	
 # load word
add	
 $t0,	
 $s2,	
 $t0
sw	
 	
 $t0,	
 48($s3) # store word

Computer Architecture (TDTS10 – HT15)

Registers vs. Memory

  Registers are faster to access than memory

  Operating on memory data requires loads and stores
  More instructions to be executed

  Compiler must use registers for variables as much as
possible
  Only spill to memory for less frequently used variables
  Register optimization is important!

Computer Architecture (TDTS10 – HT15)

Immediate Operands

  Constant data specified in an instruction

 addi	
 $s3,	
 $s3,	
 4	

  No subtract immediate instruction
  Just use a negative constant

 addi	
 $s2,	
 $s1,	
 -­‐1	

Computer Architecture (TDTS10 – HT15)

Design Principle3

  Make the common case fast

  Small constants are common : immediate operand
avoids a load instruction

  Allows us to avoid using memory meaning faster
operations and lesser energy

Computer Architecture (TDTS10 – HT15)

The Constant Zero

  MIPS register 0 ($zero) always holds the constant 0
  Cannot be overwritten

  Useful for common operations
  E.g., move between registers

 add	
 $t2,	
 $s1,	
 $zero	

Computer Architecture (TDTS10 – HT15)

Representing Instructions

  Instructions are encoded in binary
  Called machine code

  MIPS instructions
  Encoded as 32-bit instruction words
  Small number of formats encoding operation code

(opcode), register numbers, …
  Regularity!

  Register numbers
  $t0	
 –	
 $t7	
 are reg’s 8 – 15
  $s0	
 –	
 $s7 are reg’s 16 – 23

Computer Architecture (TDTS10 – HT15)

Example
 add $t0, $s1, $s2

Computer Architecture (TDTS10 – HT15)

special $s1	
 $t0	
 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002

op rs rt rd shamt funct

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

$s2	

Representing Instructions

  The layout or the form of representation of
instruction is composed of fields of binary
numbers

  The numeric version of instructions is called
machine language and a sequence of such
instructions is called machine code

Computer Architecture (TDTS10 – HT15)

Instruction types

  R format (for register)
  add, sub

  I-format (for immediate)
  Immediate

  Data transfer

Computer Architecture (TDTS10 – HT15)

MIPS R-format Instructions

  Instruction fields
  op: operation code (opcode)

  rs: first source register number

  rt: second source register number

  rd: destination register number

  shamt: shift amount (00000 for now)

  funct: function code (extends opcode)

Computer Architecture (TDTS10 – HT15)

op rs rt rd shamt funct

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

MIPS I-format Instructions

  Immediate arithmetic and load/store instructions
  rt: destination register number
  rs: register number with address
  Constant/ Address: offset added to base address in rs

Computer Architecture (TDTS10 – HT15)

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Design Principle 4
!  Ideally,

!  Keep all instructions of the same format and length
!  But this makes it difficult to address large memories

!  Compromise and allow different formats

!  Principle 4: Good design demands good compromises
!  Different formats complicate decoding, but allow 32-bit

instructions uniformly
!  Keep formats as similar as possible

!  See example in page 98

Computer Architecture (TDTS10 – HT15)

Stored Program Computers
  Instructions represented in

binary, just like data

  Instructions and data stored in
memory

  Programs can operate on
programs
  e.g., compilers, linkers, …

  Binary compatibility allows
compiled programs to work on
different computers
  Standardized ISAs

Computer Architecture (TDTS10 – HT15)

Logical Operations
  Instructions for bitwise manipulation

Computer Architecture (TDTS10 – HT15)

Operation C Java MIPS
Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

!  Useful for extracting and inserting groups
of bits in a word

§2.6 Logical O
perations

Shift Operations

  Shift left logical
  Shift bits to the left and fill the empty bits with zeros
  sll	
 	
 $t2,$s0,3	

Computer Architecture (TDTS10 – HT15)

0000 0000 0000 0000 0000 0000 0000 0001

Shift Operations

  Shift left logical
  Shift bits to the left and fill the empty bits with zeros
  sll $t2,$s0,3

Computer Architecture (TDTS10 – HT15)

0000 0000 0000 0000 0000 0000 0000 0001

0000 0000 0000 0000 0000 0000 0000 1000

Shift Operations

  Shift left logical
  Shift bits to the left and fill the empty bits with zeros
  sll $t2,$s0,3

  sll by i bits multiplies by 2i

Computer Architecture (TDTS10 – HT15)

0000 0000 0000 0000 0000 0000 0000 0001

0000 0000 0000 0000 0000 0000 0000 1000

Shift Operations

Computer Architecture (TDTS10 – HT15)

op rs rt rd shamt funct

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Shift Operations

  sll	
 	
 $t2,$s0,3	

  shamt: how many positions to shift

  Similarly, …
  Shift right logical

Computer Architecture (TDTS10 – HT15)

op rs rt rd shamt funct

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

0 0 16 10 3 0

$s0 $t2

AND Operations
  Mask bits in a word

  Select some bits, clear others to 0

 and	
 $t0,	
 $t1,	
 $t2	

Computer Architecture (TDTS10 – HT15)

0000 0000 0000 0000 0000 1111 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2	

$t1	

0000 0000 0000 0000 0000 1100 0000 0000 $t0	

OR Operations
  Include bits in a word

  Set some bits to 1, leave others unchanged

 or	
 $t0,	
 $t1,	
 $t2	

Computer Architecture (TDTS10 – HT15)

0000 0000 0000 0000 0000 1111 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2	

$t1	

0000 0000 0000 0000 0011 1111 1100 0000 $t0	

NOT Operations
  Useful to invert bits in a word

  Change 0 to 1, and 1 to 0

  MIPS has NOR 3-operand instruction
  a NOR b == NOT (a OR b)

 nor	
 $t0,	
 $t1,	
 $zero	

Computer Architecture (TDTS10 – HT15)

0000 0000 0000 0000 0011 1100 0000 0000 $t1	

1111 1111 1111 1111 1100 0011 1111 1111 $t0	

Register 0: always
read as zero

Shift Operations

  Shift right arithmetic
  Shift bits to the right and fill the empty bits with sign bit
  sra	
 	
 $t2,$s0,shamt	

  Shift left arithmetic can be achieved with sll!

Computer Architecture (TDTS10 – HT15)

Conditional Operations

  Branch to a labeled instruction if a condition is true
  Otherwise, continue sequentially

  beq rs, rt, L1
  if (rs == rt) branch to instruction labeled L1;

  bne rs, rt, L1
  if (rs != rt) branch to instruction labeled L1;

  j L1
  unconditional jump to instruction labeled L1

Computer Architecture (TDTS10 – HT15)

Compiling If Statements

  C code:

 if (i==j) f = g+h;
else f = g-h;

  f, g, … in $s0,	
 $s1, …

Computer Architecture (TDTS10 – HT15)

Compiling If Statements

  C code:

 if (i==j) f = g+h;
else f = g-h;

  f, g, … in $s0, $s1, …

  Compiled MIPS code:

 bne	
 $s3,	
 $s4,	
 Else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 add	
 $s0,	
 $s1,	
 $s2	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 j	
 	
 	
 Exit	

Else:	
 sub	
 $s0,	
 $s1,	
 $s2	

Exit:	
 …	

Computer Architecture (TDTS10 – HT15)

Assembler calculates addresses

RISC vs CISC

Computer Architecture (TDTS10 – HT15)

CISC Approach

  Complex Instruction Set Computer

  C code:

 g = h + A[8];

  CISC
add a,32

  Achieved by building complex hardware that loads
value from memory into a register and then adds it
to register a and stores the results in register a

Computer Architecture (TDTS10 – HT15)

CISC vs RISC

  C code:

 g = h + A[8];

  CISC
add a,32

  Compiled MIPS code:

 lw	
 	
 $t0,	
 32($s3)	
 	
 	
 	
 	
 # load word
add	
 $s1,	
 $s2,	
 $t0	

Computer Architecture (TDTS10 – HT15)

CISC Advantages

  Compiler has to do little
  Programming was done in assembly language

  To make it easy, more and more complex instructions
were added

  Length of the code is short and hence, little memory is
required to store the code
  Memory was a very costly real-estate

  E.g., Intel x86 machines powering several million
desktops

Computer Architecture (TDTS10 – HT15)

RISC Advantages

  Each instruction needs only one clock cycle

  Hardware is less complex

Computer Architecture (TDTS10 – HT15)

RISC Roadblocks

  RISC processors, despite their advantages, took several
years to gain market
  Intel had a head start of 2 years before its RISC

competitors
  Customers were unwilling to take risk with new

technology and change software products
  They have a large market and hence, they can afford

resources to overcome complexity

  Interview with Hennessy
  http://cs.stanford.edu/people/eroberts/courses/soco/

projects/risc/about/interview.html

Computer Architecture (TDTS10 – HT15)

Concluding Remarks

  Design principles
1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

  Layers of software/hardware
  Compiler, assembler, hardware

  MIPS: typical of RISC ISAs
  c.f. x86

Computer Architecture (TDTS10 – HT15)

Supporting procedures

  Procedure or a function is a tool used to structure programs
  It may have arguments

  It may return a value

  E.g.,
  void swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

Computer Architecture (TDTS10 – HT15)

Execution of a procedure

  Steps required
1.  Place parameters (arguments) in registers

2.  Transfer control to procedure

3.  Acquire storage resources for procedure

4.  Perform procedure’s operations

5.  Place result in register for caller

6.  Return to place of call

Computer Architecture (TDTS10 – HT15)

Register Usage

  $a0 – $a3: save the arguments (reg’s 4 – 7)

  $v0, $v1: save the result values to be returned
(reg’s 2 and 3)

  $ra: return address (reg 31)

Computer Architecture (TDTS10 – HT15)

Procedure Call Instructions

  Procedure call: jump and link

 jal ProcedureLabel
  Address of following instruction (return address) put in $ra
  Jumps to target address

  Procedure return: jump register

 jr $ra
  Copies $ra to program counter or PC (What is PC?)
  Can also be used for computed jumps

  e.g., for case/switch statements

Computer Architecture (TDTS10 – HT15)

Stack

  What if there are more than four arguments?

  Spill registers to stack

  Stack is a data structure – a Last-in-First-out queue that is
ideal for this

  More on the MIPS calling convention in your lession – part of
exam syllabus !

Computer Architecture (TDTS10 – HT15)

