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Review
Glossary

Adaptation: prolonged exposure to a stimulus modulates neural and

behavioral responses to the stimulus.

Aftereffects: prolonged exposure to a stimulus distorts perception of a new

stimulus that follows it in time, in a direction opposite to the first stimulus.

Face inversion effect: decline in recognition for upside-down relative to upright

stimuli is larger for faces than any other non-face objects.

Fusiform face area (FFA): a face-selective area that is found in the human

fusiform gyrus. Other occipito-temporal face-selective areas are found in the

lateral occipital and superior temporal sulcus.

Other race effect: recognition of faces of other races (e.g., Caucasian faces by

Asian observers) is poor relative to own race faces (e.g., Asian faces by Asian

observers).

Retinotopy: the visual field is mapped topographically onto neurons in the

retina and early visual cortex such that adjacent neurons encode nearby

regions in the visual field.

Temporal voice areas (TVA): voice-selective areas found in the middle and

anterior parts of the human superior temporal sulcus/gyrus bilaterally, with a

right-hemispheric asymmetry.

Tonotopy: sounds of different frequency are organized topographically in the

ascending auditory pathways and early auditory cortex, such that nearby

neurons are tuned to nearby frequencies.

Perceptual narrowing: discrimination abilities among sensory stimuli in young

infants (three–six months old) are reduced in older infants (nine months old)

for stimuli for which they have no perceptual experience with (e.g., monkey

faces, monkey face–voice integration).

Phonoagnosia: selective deficit in voice recognition. Most cases reported have

been due to brain damage in the right temporo-parietal junction. A single case

of developmental phonagnosia (i.e., with no apparent brain damage) has been
Both faces and voices are rich in socially-relevant infor-
mation, which humans are remarkably adept at extract-
ing, including a person’s identity, age, gender, affective
state, personality, etc. Here, we review accumulating evi-
dence from behavioral, neuropsychological, electrophys-
iological, and neuroimaging studies which suggest that
the cognitive and neural processing mechanisms en-
gaged by perceiving faces or voices are highly similar,
despite the very different nature of their sensory input.
The similarity between the two mechanisms likely facil-
itates the multi-modal integration of facial and vocal
information during everyday social interactions. These
findings emphasize a parsimonious principle of cerebral
organization, where similar computational problems in
different modalities are solved using similar solutions.

Similar cognitive and neural representations for faces
and voices
Faces and voices are the most socially important stimuli in
the visual and auditory domains, respectively. The nature
of the sensory input associated with these key social sti-
muli is very different: reflections of light on the face vs air
pressure waves generated by the vocal apparatus. Yet,
they both convey very similar types of information about
a person, including identity, gender, emotional state, and
age. Furthermore, in many cases of social communication
faces and voices are processed simultaneously and have
been shown to have facilitatory effects on recognition of
person information relative to when each is presented
alone (for a review, see [1]; Box 1). It is therefore plausible
that, despite their very different sensory input, they may
generate, at least to some extent, a similar representation.
Indeed, recent studies reveal many similarities between
their neural and cognitive representations.

In this review, we highlight the many similarities
that have been found between the neural and cognitive
mechanisms of face and voice processing in the past few
years. We will summarize evidence pertaining to the
following five areas: neurophysiological mechanisms; neu-
rocognitive disorders; functional architecture; perceptual
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coding; and development and experience (Table 1; see
Glossary). Because faces have been studied more extensively
than voices, we will also highlight several well-established
phenomena that have been reported for faces and should
be investigated in future studies with voices to further
explore their unified coding strategy.

The many similarities that exist between the neural and
cognitive representation of faces and voices suggest a
unifying coding mechanism that has evolved to represent
the very rich and diverse information that these unique
classes of visual and auditory stimuli convey about a
person. More generally, these findings suggest that the
brain may employ similar principles for processing stimuli
that convey similar types of information not only within
the same modality, but also across different modalities.
described.

Prosopagnosia: selective deficit in face recognition, which appears in two

forms, acquired and developmental. Acquired prosopagnosia results from

brain damage, usually in the right temporal lobe. Developmental cases suffer

from a life-long deficit with no apparent brain damage.

Voice inversion: voice stimuli can be reversed in time or inverted (‘or rotated’)

in frequency, inducing recognition deficits.
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Box 1. Face–voice integration for person information

Face-voice integration has been primarily studied in the context of

speech processing. However, given that faces and voices convey

important and similar non-speech information about person

identity, it is also important to examine face–voice integration for

the processing of identity, emotion, age, and gender. Recent studies

have shown that face–voice integration contributes significantly to

the extraction of person information [77]. Specifically, cross-modal

interaction in the processing of face and voice identity has been

shown in studies that presented congruent and incongruent identity

[78]. Face–voice integration for gender has been shown even with

pure tones extracted from male and female voices, which were not

recognized by participants as male or female voices. These pure

tones biased perception of an androgynous face to a male or a

female face according to the gender of the tone [79]. Integration

effects between faces and voices have also been observed for

emotional information [80–82].

Face–voice integration appears very early in life. Several studies

have shown that at two months of age, infants begin to exhibit the

ability to perceive face–voice correspondences [83]. Interestingly,

perceptual narrowing, which has been shown for faces and speech

(see main text), has been reported also for face–voice integration.

For example, four–six- and eight–ten-month-old infants were

presented with consistent and inconsistent face–voice stimuli of

monkeys and humans. Whereas the four–six–month-old infants

were able to match face-voice stimuli of both humans and monkeys,

eight–ten-month-old infants were able to match human but not

monkey face–voice stimuli [84,85]. The similar developmental track

that is found for faces and voices presented in isolation, as well as

for the integration of the two stimuli, is in line with the idea that

similar coding mechanisms of unisensory information may underlie

successful multisensory integration.
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Neurophysiological mechanisms
Faces and voices have both been shown to elicit highly
selective neural responses in the human brain (Figure 1A–C).
Faces have been typically compared to non-face objects,
such as houses or chairs. Voices are usually compared to
different categories of non-vocal sounds, such as environ-
mental or mechanical sounds. Functional MRI (fMRI)
studies reveal much stronger responses to faces than
any other non-face stimuli in at least three occipital tem-
poral areas: the occipital face area (OFA) in the lateral
occipital cortex, the fusiform face area (FFA) in the mid
fusiform gyrus, and a face area in the posterior superior
temporal sulcus (STS–FA) [2,3] (Figure 1A, left). Recent
studies also reveal more anterior face-selective responses
in the anterior temporal lobe and the prefrontal cortex
[4]. Voice-selective cortical mechanisms do also exist:
fMRI studies have identified several regions along the
middle and anterior STS and superior temporal gyrus
(STG) that show a greater response to vocal sounds
(regardless of whether they carry intelligible speech or
not [5]) than to non-vocal sounds [6–8]: these areas were
named the ‘temporal voice areas’ (TVA) (Figure 1A,
right). Voice-sensitive responses have also been observed
in other areas, including the insula and prefrontal cortex
[9–11].

Consistent with neuroimaging findings, electroenceph-
alography (EEG) and magneto-encephalography (MEG)
studies show face- and voice-selective evoked responses.
Faces elicit a component of much larger in amplitude
than non-face stimuli 170 ms after stimulus onset – the
face-selective N170/M170 [12,13] (Figure 1B, left). A voice-
selective electrophysiological component at a latency com-
264
parable to that of the N170, termed the ‘fronto-temporal
positivity to voice’ (FTPV), has been also recently reported
in EEG [14–16] (Figure 1B, right) and MEG [17] studies
approximately 200 ms after sound onset. Finally, transcra-
nial magnetic stimulation (TMS) of fMRI-defined face-
selective areas indicates a causal and specific role for
the occipital face area in face discrimination (Figure 1C,
left) and in the generation of the face-selective N170
response [18,19]. Similarly, TMS over the TVA has been
shown to disrupt voice detection [20] (Figure 1C, right).

Finally, one prominent and well-established feature of
the face-processing mechanism is its right hemisphere
asymmetry, which has been manifested both in neural
and behavioral measures [21,22]. Whereas speech proces-
sing is lateralized to the left hemisphere, voice recognition,
similar to faces, elicits neural responses that are right
lateralized [21].

Face- and voice-selective neural responses are not
limited to the human brain, but have also been observed
in the macaque brain. Face neurons are commonly found in
the superior temporal sulcus and the inferotemporal cortex
[23]. Furthermore, functional MRI studies reveal a net-
work of face-selective areas primarily in the upper and
lower banks of the superior temporal sulcus [4] that share
at least some anatomical and functional similarities with
the human face areas [24] (Figure 1D, left). Similarly,
monkey fMRI studies revealed voice-selective areas [25]
in the superior temporal plane that prefer species-specific
vocalizations over other vocalizations and sounds
(Figure 1D, right). These voice-selective areas have been
shown to contain voice-selective neurons [26]. The pres-
ence of face- and voice-dedicated mechanisms in the ma-
caque brain indicates that these face and voice areas did
not just emerge recently in humans along with the emer-
gence of language and high-level social functioning skills:
they were probably already present in the last common
ancestor of macaques and humans some 30 million years
ago. This highlights the importance of these stimuli for
basic social functioning throughout primate evolution.

In summary, neurophysiological and neuroimaging
findings convincingly show that both faces and voices elicit
a highly selective neural response. This highlights not only
their social importance, but also the fact that the unique
nature of their representation requires mechanisms that
are different from those used for the processing of any other
visual and auditory stimuli. Moreover, this similarity in
their neural representations is consistent with other simi-
lar principles used for the processing of auditory and visual
stimuli, such as the tonotopic and retinotopic representa-
tions in primary auditory and visual cortex, respectively, or
the separate mechanisms for ‘where’ and ‘what’ informa-
tion that have been reported both in visual [27] and
auditory [28] systems.

Neurocognitive disorders
Consistent with the strong neural selectivity that is dis-
cussed above for faces and voices, neuropsychological stud-
ies have reported selective impairments in face or voice
recognition, in the face of otherwise intact visual or audi-
tory functions, respectively. Selective deficits in face rec-
ognition abilities (i.e., prosopagnosia) were reported over



Table 1. Face voice similarities

Face Voice

Neural selectivity

Human

Electrophysiology N170/M170 [13] FTPV [14,17]

Functional MRI Face areas in the lateral occipital, mid fusiform and

STS [2,86]

Voice areas in the STS [87]

Hemispheric asymmetry Right hemisphere [21,22] Right hemisphere voice-selectivity [21]

(left hemisphere for speech)

Effects of TMS TMS over the OFA selectively impairs performance

for faces [18] and selectively increases the face

N170 [19]

TMS over the TVA disrupts voice detection [20]

Monkey

Electrophysiology Face-selective cells [23] Voice-selective cells [26]

Functional MRI Face-selective brain areas [4,23] Voice-selective brain areas [25]

Selective recognition deficits

Developmental and acquired prosopagnosia [29,30] Developmental and acquired phonagnosia [31,34]

Perceptual Coding

Norm-based coding (Box 2) Relative to an averaged face [40,42,88] Relative to an averaged voice [39,41]

Distinctiveness effect Better recognition for distinctive faces [37] Better recognition for distinctive voices [89]

Perceptual aftereffects to

anti-faces/voices (Box 2)

Largest for matched vs non-matched anti-faces [88] Largest for matched vs non-matched anti-voices [39]

Attractiveness

(Box 3)

Averaged face is more attractive [90] Averaged voice is more attractive [91]

Development and experience

Early preference Preference for upright faces 24 hours after birth [43] Fetuses and young infants discriminate voices from

other auditory stimuli [45,46]

Neural correlates Face-selective ERPs appear at three–six months [50] Voice areas emerge between three and

seven months [52,53]

Perceptual narrowing Broad abilities for cross species face recognition at

four–six months are tuned by experience in

eight–ten-month-old infants [54]

Broad abilities for phoneme discrimination

at four–six months are tuned by experience in

eight–ten-month-old infants [56]

Effects of experience

in adulthood

Other race effect [60] Language familiarity effect [57] and own-race bias [59]
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50 years ago in brain-damaged patients following a lesion
in the occipital temporal cortex, usually over the right
hemisphere [29]. More recently, similar deficits were found
in individuals that show no specific brain lesion, but suffer
from life-long prosopagnosia, known as developmental/
congenital prosopagnosia [30]. Prosopagnosic individuals
seem to show intact recognition of objects, but exhibit
severe difficulties in recognizing familiar faces including
their close relatives and friends. Regarding voices, the
existence of patients with selective impairments in speech
comprehension has long been established (e.g., Wer-
nicke’s aphasia). More similar to prosopagnosia, a small
number of ‘phonagnosic’ patients have been identified
with impairments in speaker discrimination or recogni-
tion, even though other aspects of auditory perception
were normal [31–33]. Only one case of ‘developmental
phonagnosia’ – the selective inability to recognize speak-
ers by their voice in the absence of any evident cerebral
impairment – has been reported so far [34]. It is possible
that the lack of additional developmental phonagnosia
cases may not reflect an absence of such cases, but the
inability of individuals who suffer from this deficit to
acknowledge their deficit, as was the case with develop-
mental prosopagnosia for many years. Furthermore, a
lack of standardized tests for phonagnosia also impedes
its reliable diagnosis.
Functional architecture
As mentioned above both faces and voices convey similar
information about a person, including gender, emotional
state, identity, and age. The idea that the functional
architecture underlying face and voice processing could
be organized following comparable principles has been
discussed before and therefore will only briefly mentioned
here [1,35]. A neurocognitive architecture described by
Bruce and Young [36] has been suggested to also apply
to voices [1]: briefly, after a stage of cortical processing
common to all stimuli of their particular sensory modality,
faces and voices are selectively processed in a further
‘structural encoding’ stage, probably represented by areas
such as the FFA and TVA, respectively. Then, in each
modality, the three main types of information carried by
both faces and voices – identity, affect, speech – are pro-
cessed along functional pathways which, although they
interact with one another during normal functioning,
can be selectively activated/impaired.

Perceptual coding
One of the most influential models of face processing is the
‘face space model’ [37], which posits that face identity can
be represented as locations in a multidimensional space.
The dimensions of this space correspond to information
used to discriminate faces, whereas the distance that
265
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Figure 1. Face and voice-selective neural responses. (A) Left: face-selective areas revealed with functional MRI (fMRI) are shown in the occipital temporal cortex. Right: the

voice-selective areas are found in superior temporal sulcus and gyrus. (B) Left: faces elicit greater event related potential (ERP) amplitudes than non-faces 170 ms after

stimulus onset – N170 in occipito-temporal electrodes (red line – faces). Right: voices elicit greater amplitudes that non-voice sounds 200 ms after stimulus onset in fronto-

temporal electrodes (red line – voices). Reproduced, with permission, from [14]. (C) Left: transcranial magnetic stimulation (TMS) to the occipital face area selectively

disrupts face but not body discrimination. Adapted from [18]. Right: TMS to the temporal voice area selectively disrupts voice/nonvoice discrimination. Reproduced, with

permission, from [20]. (D) Left: face-selective areas found in the superior temporal sulcus of the macaque brain. Reproduced, with permission, from [23]. Right: voice-

selective areas were found in the superior temporal plane of the macaque brain. Reproduced, with permission, from [25].
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separates representations reflects the degree of similarity
between faces. This similarity-based framework accounts
for a range of face-recognition phenomena, such as the face
inversion effect, effects of distinctiveness and caricaturing,
and the other race effect [37]. Furthermore, single unit
recording studies in the macaque show neuronal tuning
Box 2. Multidimensional face and voice spaces

The idea that faces and voices are coded relative to a norm has

received its main support from studies that employed behavioral

adaptation paradigms. Adaptation entails exposure to a stimulus for a

relatively long duration of a few seconds. This long exposure

generates perceptual aftereffects during the presentation of a

subsequent stimulus, such that the representation of the adapted

stimulus becomes weaker and its ‘opposite’ becomes stronger. For

example, after long exposure to the color green, a white screen

appears red because of opponent red–green color coding in the retina.

Aftereffects, which were originally used to detect the properties of

low-level sensory stimuli, such as color and motion, have been later

found also for face gender, identity, and age [92–94]. For example,

long exposure to a female face generates a stronger male perception

in a 50%/50% female–male morphed face. Face aftereffects have also

been useful as tests of the properties of the multi-dimensional face

space. In particular, according to the norm-based coding hypothesis,
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for the coding of voice identity. Voices from different
all faces are coded as a function of their distance relative to an average

face that lies in the origin. Findings showed greater aftereffects for two

stimuli that are located in opposite sides of the average face (a face

and an anti-face) than two faces that are not on the axis that goes

through the origin where the average face resides (see Figure IA–C)

[38,40]. These findings provide strong support for the idea that faces

are coded in a norm-based manner relative to an average face.

Interestingly, recent aftereffect studies with voices reveal similar

effects for voice information such as gender [95], identity [96,97], and

emotion [98]. Voice aftereffects also provide evidence for norm-based

coding of voice identity: identity aftereffects induced by ‘anti-voice’

adaptors are greater in magnitude than those induced by non-

opposite adaptors [39]. As for faces, the average voice, normally

perceived as identity-free, becomes tainted with the identity of the

opposite to the anti-voice adaptor (Figure ID,E), even though voice and

anti-voice are not perceived as related in identity.
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speakers can be represented as points in a multidimen-
sional space (Box 2). Similar to faces, a prototypical voice
stimulus can be generated by averaging together a large
number of different voices of the same gender. A particular
role of this prototypical voice has been shown via percep-
tual aftereffects induced by adaptation with ‘anti-voices’
[39] in an experimental paradigm directly adopted from
face experiments [40]. Cerebral activity in the TVA has
recently been shown to vary as a function of a voice’s
acoustical distance to the prototypical voice [41] – i.e.,
‘‘norm-based coding’’. This is analogous to results from
the fusiform face area which showed increase in signal
with increased distance from the mean face [38,42].

Development and experience
Given the importance of face and voice recognition for
intact social functioning and the specific computations that
are needed to extract the rich information that they convey,
it may not be surprising that processing mechanisms for
faces and voices appear very early in development. A
specific preference for upright faces in infants has been
found during the first 24 hours after birth [43]. These
findings suggest that face processing mechanisms may
be innate and that early on face-like figures attract atten-
tion more than other non-face stimuli [44]. Similarly, there
is clear evidence that very young infants – even fetuses –
can discriminate voices from other auditory stimuli and
can recognize their mother’s voice [45,46]. By the age of
three months, infants also prefer listening to human voices
than to vocalizations from other species [47].

Early evidence for neural selective responses to faces or
voices also exists. For faces, one positron emission tomog-
raphy (PET) study with two-month-old infants has shown
face-selective responses (faces > diodes) in the lateral
occipital and the fusiform gyrus. Although the choice of
control stimuli was not ideal, these areas may correspond
to the adult OFA and FFA [48]. Event related potential
(ERP) studies with three-month-old infants reveal face-
selective components – the N290 and N400 [49,50]. These
components emerge later than the adult N170 and spread
over a longer time range. Thus, face-selective neural mech-
anisms may exist at early infancy, but are further sharp-
ened during development. With respect to information
carried by voices, the contrast of fMRI measures of activity
for speech vs reversed speech already shows an adult-like
left-lateralized pattern at three months [51]. Evidence of
greater response to vocal vs non-vocal sounds seems to
emerge slightly later, between three and seven months, as
shown by near-infrared spectroscopy (NIRS) and fMRI
[52,53]. Notably, newborns already exhibit a neural signa-
ture for voice identity recognition [46].

Evidence for early, possibly innate, existence of face and
voice selective mechanisms does not imply that their de-
velopment is not influenced by experience. Perceptual
narrowing during infancy has been reported for both face
and speech stimuli. In particular, at six months of age
infants can recognize both monkey and human faces, but
the former ability declines by nine months, when face
recognition becomes better for human faces [54,55]. Simi-
lar perceptual narrowing has been reported for speech [56].
The language spoken in one’s cultural group is an obvious
268
such influence of experience, with evidence for cerebral
mechanisms tuned to the specific set of phonemes of the
maternal language within the first year after birth (see
Box 1 for perceptual narrowing of face–voice integration).

Non-linguistic aspects of voice perception, such as
speaker recognition, also seem to be susceptible to envi-
ronmental influence: it is well established that listeners
recognize speakers of their own or a familiar language
better than speakers of an unfamiliar language, the
language familiarity effect [57,58] and there is partial evi-
dence for a potential effect of race on voice recognition [59].
This phenomenon may parallel the well-established ‘other
race effect’ – humans’ poor ability to recognize faces of other
races (e.g., Asian faces by Caucasian observers and vice
versa) [60], which results from the little contact with faces
of other races. Taken together, evidence suggests that mech-
anisms selective for the processing of faces and voices appear
very early in development and may even be innate. These
mechanisms are widely tuned to all types of face and voice/
speech stimuli early on, but narrow down already by nine
months of age and remain narrowly tuned to the type of faces
and voices one has experience with also in adulthood.

Unexplored face–voice similarities
Whereas ample evidence already exists for the similar
coding of faces and voices, many phenomena that have
been discovered in the extensive study of faces in the past
50 years still await testing with voice stimuli. Crucially,
several behavioral phenomena have suggested a special
status for faces compared to non-face objects, but no such
effects are known for vocal stimuli. These would include a
voice correlate of the face inversion effect [61] and/or the
contrast reversal effects (stimulus manipulations that re-
sult in a disproportionately large recognition deficit relative
to non-face stimuli [62]. Another hallmark of face processing
is its holistic representation [63], which is manifested by
interactive, rather than independent, representation of
the face parts. Testing whether these well-established
face-specific effects have their counterparts in the auditory
domain may be a fruitful avenue of research. For instance,
studies using a gating paradigm or examining the effects of
transformation such as time reversal or frequency reversal
(or ‘rotation’ [64]) on different stimuli could potentially
highlight effects specific to vocal sounds [65,66].

Other phenomena that have been extensively studied
with faces are the different representations of familiar and
unfamiliar faces [67,68]. For example, the representation
of familiar faces is more tolerant to stimulus manipula-
tions such as viewpoint or lighting changes relative to
unfamiliar faces. Also, faces are detected more rapidly
than other objects in visual scenes and search arrays
[69] and have been shown to capture attention relative
to other objects [70]. It is still unknown whether voices
have a similar privileged status relative to other sounds.

Finally, faces automatically elicit social inferences
about the personality of the individual [71,72]. Interest-
ingly, it has been shown that these inferences can be
clustered into two main independent inferences, trustwor-
thiness and dominance [71,72]. Evidence for a similar two-
dimensional space that maps onto trustworthiness and
dominance has also been suggested for voices [73]. Future



Box 3. Are averaged faces and voices more attractive?

It has been shown for over a century that ‘averaged faces’ generated

by averaging together a number of different faces are highly attractive

[90,99] (Figure IA). Evolutionary theory proposes that averaged faces

are more attractive because they contain features that are indicators of

fitness in natural faces (the ‘good genes’ account): symmetry,

averageness, texture smoothness [100,101]. A more cognitive expla-

nation of this phenomenon is in terms of similarity to the internal

prototype, which results in easier to process, more pleasant stimuli

(‘perceptual fluency’) [102].

Both the good genes and perceptual fluency accounts predict

that a similar phenomenon should be observed for voices. Bruckert

et al. [91] used morphing (Figure IB) to generate voice composites

made of an increasing number of voices and observed, as predicted

by face studies, a significant increase in attractiveness ratings.

Two main acoustical parameters were highlighted, both analogous

to those shown to influence face attractiveness: distance-to-mean

(acoustical similarity with the population average); and ‘texture

smoothness’ (i.e., amount of spectro-temporal irregularities)

[91].

Note that for both faces and voices, averageness appears to be one

factor among many that influence the attractiveness percept. Other

factors, such as sexual dimorphism, are also known to contribute to

both face and voice attractiveness in a complex, context-dependent

manner [103–105].

Male faces Female faces
7

6

5

4

3

2

1

0
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7

Number of face averaged Number of face averaged Number of voices averaged

A�
ra

c�
ve

ne
ss

 ju
dg

m
en

t

A�
ra

c�
ve

ne
ss

 ju
dg

m
en

t 1.0

0.5

0

-0.5

-1.0

Male voices Female voices

1 2 4 48 16 32 1 2 8 16 32U
na

�
ra

c�
ve

A�
ra

c�
ve

A�
ra

c�
ve

ne
ss

(A) (C)

(B)
(D)

TRENDS in Cognitive Sciences 

Figure I. Face and voice attractiveness judgments as a function of averaging. (A) Face composites generated by averaging 32 male faces (left) and 64 female faces

(right). (B) Attractiveness ratings as a function of number of face averaged. Note the steady increase in attractiveness ratings with increasing number of averaged faces,

for both male (left) and female (right) faces. Reproduced, with permission, from [106]. (C) Spectrograms of voice composites generated by averaging an increasing number

of voices of the same gender (different speakers uttering the syllable ‘had’). (D) Attractiveness ratings as a function of number of voices averaged. Note the steady increase in

attractiveness ratings with increasing number of averaged voices, for both male (left) and female (right) voices. Reproduced, with permission, from [91].

Box 4. Outstanding questions

� Is the perceptual and cerebral processing of unfamiliar voices

different in nature from that of highly familiar voices, as has been

demonstrated for faces?

� Is there ‘holistic’ processing in representing voice? Can ‘voice

inversion’ or ‘voice composite’ effects be observed?

� Is the threshold for voice detection lower than for other sound

categories? Do voices capture more attention than other auditory

stimuli?

� Are there any neural/perceptual effects that are specific to voices

that should be studied with faces?

� Is the neural system that mediates face processing more extensive

than the neural system that mediates voice processing?
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studies will determine whether trustworthiness and
dominance are correlated with voice expression and voice
gender, respectively, as was shown for faces [74].

Concluding remarks
Visual and auditory signals have very different physical
properties and are processed by separate neural sub-
strates. Nevertheless, the visual and auditory pathways
do employ some similar mechanisms, including the reti-
notopic and tonotopic representations seen in early sensory
cortices and a separation to ‘what’ and ‘where’ pathways in
both vision and audition [27,75]. In this review, we have
shown that the two systems also apply very similar compu-
tational operations to the processing of their categories of
overriding ecological importance, faces and voices. This is
manifested in category neural selectivity to faces and voices
that was found both in human and macaque brains, selective
cognitive impairments, and early appearance in develop-
ment. Furthermore, similar norm-based coding schemes
for identity and attractiveness (Box 3) and separate, but
interactive pathways for identity expression and speech
have been demonstrated (Table 1). These similarities, as
well as others that should be explored in futures studies
(Box 4), are likely to contribute to effective face–voice inte-
gration (Box 1), which has been shown to result in recogni-
tion that exceeds the sum of each of the stimuli alone.
269
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Note that this review has largely focused on the simi-
larity between faces and voices. However, these two stimuli
also differ in important ways. Importantly, human face
recognition abilities surpass the ability to recognize people
by voices [e.g., 76]. This may not be surprising given the
fact that humans are highly visual species. Whether this
difference reflects a more complex organization of the face
network with, for example, more areas (as the data available
on voice areas in the human or macaque brain suggest) or a
less informative signal to start with (1-dimensional sound
frequency vs 2-dimensional visual spatial), or both, remains
to be established.
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