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New tools and new ideas have changed how we think about the

neurobiological foundations of speech and language

processing. This perspective focuses on two areas of progress.

First, focusing on spatial organization in the human brain, the

revised functional anatomy for speech and language is

discussed. The complexity of the network organization

undermines the well-regarded classical model and suggests

looking for more granular computational primitives, motivated

both by linguistic theory and neural circuitry. Second, focusing

on recent work on temporal organization, a potential role of

cortical oscillations for speech processing is outlined. Such an

implementational-level mechanism suggests one way to deal

with the computational challenge of segmenting natural

speech.
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Introduction
Experimental research on the neurobiological founda-

tions of speech and language processing has taken con-

siderable strides in the last decade, due in part to

advances in the methods available to study the human

brain (improved resolution of recording techniques) and

in part to more theoretically motivated research that

builds on crucial distinctions provided by the results of

linguistics, cognitive psychology and computer science

(improved ‘conceptual resolution’). As the neurobiology

of language matures, the units of analysis continue to

change and become increasingly refined: from (i) broad

(and somewhat pre-theoretical) categories such as ‘pro-

duction’ versus ‘perception/comprehension’ to (ii) sub-

routines of language processing such as phonology, lexical
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processing, syntax, semantics, and so on, to (iii) ever more

fine-grained representations and computational primi-

tives argued to underpin the different subroutines of

language, such as concatenation, linearization, among

others.

In all areas of language processing, noteworthy new

perspectives have been developed (reviewed, among

many others, for example, in [1–3], with special emphasis

on speech, linguistic structure-building, and the sensor-

imotor basis of speech/language, respectively). Notwith-

standing the novel approaches, many of the substantive

challenges are only now becoming clear. The number and

arrangement of the cortical and subcortical regions under-

pinning speech and language processing demonstrate that

the system is considerably more complex and distributed;

the age of Broca’s and Wernicke’s areas and the era of left-

hemisphere imperialism are over. Here I focus on a two

issues that are redefining the research agenda, pointing

towards a computational neurobiology of language [4], a

research direction that emphasizes the representational

and computational primitives that form the basis of

speech and language.

There are, of course, many ways to illustrate the progress

that has been made, highlighting new ideas and direc-

tions. One approach would be to review the different

aspects or levels of language processing that have been

examined in new neuroscientific experimentation, that is,

phonetics, phonology [5,6�], lexical access [7–10], lexical

semantics [11], syntax [12,13], compositional semantics

[14��,15], discourse representation [16,17]; moreover, the

interaction of the linguistic computational system with

other domains has been investigated in interesting ways,

including how language processing interfaces with atten-

tion [18], memory [19], emotion [20], cognitive control

[21], predictive coding [22–24], and even aesthetics [25].

A different approach is taken here, focusing first on the

revised spatial map of brain and language; then, narrow-

ing to one functional problem, a new ‘temporal view’ is

discussed to illustrate a linking hypothesis between the

computational requirements of speech perception and

the neurobiological infrastructure that may provide a

neural substrate.

The new functional anatomy: maps of regions,
streams, and hemispheres
Our understanding of the anatomic foundations of

language processing has changed dramatically in the last

10 years, ranging from the biggest to the most local levels.
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One might call this the maps problem [26], that is, the

challenge to define the best possible spatial map that

describes the anatomic substrate [27–29]. The older,

‘classical’ view and its limitations are discussed further

in Hagoort, this volume, where a contrasting dynamic

network view of local function is described.

(a) Starting at the most coarse level, consider the role of

hemispheric asymmetry. Historically, the lateralization of

language processing to the ‘dominant hemisphere’ has

been one of the principal defining features. It was uncon-

troversial that language processing is strongly lateralized.

However, a more nuanced and theoretically informed view

of language processing, breaking down the processes into

constituent operations, has revealed that lateralization

patterns are complex and subtle — and that not all

language processing components are lateralized. For

example, when examining the cortical regions mediating

speech perception and lexical level comprehension, lesion

[30,31], imaging [32–34], and electrophysiological data

[35,36�] demonstrate convincingly that both left and right

superior temporal cortical regions are implicated. Indeed,

the operations mapping from input signals (e.g. sound) to

lexical-level meaning, argued to be part of ventral stream

processing (see b, below) appear to be robustly bilateral, as

illustrated in Figure 1a (bottom panel).
Figure 1
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By contrast, it is typically argued that the structures and

operations underlying production, for example, are later-

alized. As illustrated in Figure 1a, one of the dorsal stream

projections, suggested to underpin the sensory-motor

mapping necessary for perception-production alignment,

is depicted as fully lateralized. However, new data

acquired in pre-surgical epilepsy patients using electro-

corticography (ECog) seriously challenge even this gener-

alization [37��]. It is shown based on a range of tasks

requiring sensory (sound)-to-motor (articulatory) trans-

formation that the dorsal stream structures that provide

the basis for this mapping are clearly bilateral as well

(Figure 1b). Other, non-speech dorsal stream functions,

for example operations that are part of grammatical

relations, may be supported by other dorsal stream pro-

jections, and their lateralization pattern has not been fully

established, although there appears to be a fair degree of

lateralization to the dominant hemisphere (see [2] and

Hagoort, this volume).

Various other imaging and physiology experiments on

other aspects of language [38,23] also invite the interpret-

ation that lateralization patterns are more complex than

anticipated. Cumulatively, in other words, the language-

ready brain (to use a phrase of Hagoort, this volume)

appears to execute many of its subroutines bilaterally,
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eam network (mapping from sound to meaning) and the lateralized dorsal

ory-motor transformations for speech, from [37��]. (c) Spectrograms for

lay had to repeat it; A ‘Listen-Mime’ task: subjects heard a word and after
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unlike the 150-year-old dogma. And yet . . . There remain

compelling reasons why an explanation for lateralization

of function is required. Lesions to the left versus the right

peri-Sylvian regions do not lead to the same linguistic

deficits, so a new approach to this classical issue is

necessary.

Which operations are functionally lateralized (and why)

remains controversial. It has been debated for the speech

perception case, for instance [39–41], but the nature of

the questions is at least fine-grained, that is to say at the

level of circuits that execute specific (possibly network-

dependent) computations [42]. One hypothesis that mer-

its exploration is as follows: the operations that comprise

the processing of input and output systems (the inter-

faces) are carried out bilaterally; the linguistic operations

per se, beyond the initial mappings, and specifically those

that require combinatorics and composition (COM) as well

as linguistically (structurally-) based prediction (PRE) are

lateralized. A COM-PRE view predicts that the neural

circuits mediating those types of operations on linguistic

data structures are asymmetrically distributed; but how

such circuits might look remains pure speculation.

(b) The organization of language regions within a hemi-

sphere has also seen a major shift in perspective. The

classical model — still the prevailing view in most text-

books — identifies a few crucial areas (Broca’s and Wer-

nicke’s regions, often the angular gyrus, connected by the

arcuate fasciculus) and attributes entire chunks of lin-

guistic cognition to these large brain regions. (See

Hagoort, this volume, for critique.) There now exists

consensus that a more likely organization involves pro-

cessing streams organized along dorsal and ventral routes.

This is argued to be the case for speech [1,43,44], lexical

level processing [45], syntactic analysis [2], and semantics

[46].

The existence of concurrent ‘what,’ ‘where,’ and ‘how’

streams in vision highlights how large-scale compu-

tational challenges (localization, identification, sensori-

motor transformation/action — perception linking) can

be implemented in parallel by streams consisting of

hierarchically organized cortical regions. This key idea

from visual neuroscience was adapted for speech and

language in the past 10 years [1,2,43,44]. Figure 1a illus-

trates one such model, constructed to account for a range

of phenomena in speech. The bilateral ventral streams are

considered responsible for supporting the transformation

from auditory input to lexical representations. The dorsal

stream (one of at least two parallel dorsal streams, see [2])

is primarily crucial for sensorimotor transformations.

(c) Crucial advances on local anatomy. Until about 2000,

the interpretation of experimental data implicating Bro-

ca’s area was made at a level of analysis referring to left

inferior frontal gyrus and, at best, about Brodmann areas
Current Opinion in Neurobiology 2014, 28:142–149 
44 versus 45. There exist some interesting connectivity

studies, as well [47], but by and large the functional

anatomic characterization has been coarse. (Hagoort, this

volume, provides a more extensive discussion of the

functional role of Broca’s area.)

New anatomic techniques (imaging, immunocytochem-

istry) have now been applied. Data in an influential paper

[48��] show that the organization of this one cortical

region is much more complex, incorporating (depending

how one counts) 5–10 local fields that differ in their

cellular properties. Figure 2a [48��] illustrates the cur-

rently hypothesized organization of Broca’s region, high-

lighting anterior and posterior as well as dorsal and ventral

subdivisions of known fields and pointing to additional,

separate opercular and sulcal regions that are anatomically

identifiable.

It is highly likely that each sub-region performs at least
one different computation — after all, they are anatomi-

cally distinct. Suppose then that there are merely five

anatomic subdomains in Broca’s region, and suppose that

each anatomic subdomain supports, say, two compu-

tations. These are conservative numbers, but we must

then still identify 10 computations (underestimating the

actual complexity). Some of the computations will apply

to any input data structure (structured linguistic repres-

entation, speech signal, action plan, rhythmic sequence,

among others), since it is established that Broca’s region is

engaged by numerous cognitive tasks [49]. Other com-

putations may be dedicated to data structures native to

the linguistic cognitive system. We know little about

precisely what kind of conditions need to be met to

trigger selectively the many areas that constitute this part

of the inferior frontal cortex.

(d) A final point about anatomy: the vast majority of

research on brain and language has focused on the

traditional peri-Sylvian language areas; but both cortical

and subcortical regions that have not been investigated

before as much play a crucial role. (This point is ampli-

fied, as well, in Hagoort, this volume.) Two regions, in

particular, deserve emphasis with respect to linguistic

computation: the left anterior temporal lobe (ATL), and

the posterior middle temporal gyrus (pMTG). The left

ATL has been implicated in a variety of experiments on

elementary structure assembly, that is, the primitive

combinatorics (COM) that underlie syntactic and

semantic structure building. fMRI data show quite con-

sistently that combination into phrasal units, perhaps in

the service of subsequent semantic interpretation, is

mediated there [2]. Recent MEG data [14��,15] provide

evidence about the dynamics; the experiments demon-

strate that between 200 and 300 ms after the onset of a

crucial word that can be combined with a previous item,

this region reflects the execution of basic combinatoric

operations.
www.sciencedirect.com
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Figure 2
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(a) Broca’s region, from [48��]. Note the numerous subdivisions in the region. (b) Major pathways associated with left MTG, from [50�]. Tractography

data from two subjects are show. Each row depicts the individual subject’s ROI, represented in their native space (left, yellow). Sagittal, axial, and

coronal slices of the fiber bundles involved are shown. As per DTI mapping, left MTG is massively connected to crucial language regions in a hub-like

manner.
The pMTG appears to be a crucial lexical node in the

larger network of language areas — and heavily con-

nected to lATL. This region is, in general, very richly

connected to other language areas (see Figure 2b, [50�])
and is driven by many lexical tasks in imaging studies,

including lexical access, lexical ambiguity resolution, and

other processes. Lesions to the MTG lead to severe word

comprehension difficulties [51] and profound aphasia, if

paired with STG lesions. Recent MEG data on the

dynamics in pMTG during lexical access show that, after

initial activation of lexical targets, unambiguously lexical

attributes such as surface frequency and neighborhood

density elicit MTG modulation [52] no later than 350 ms

after word onset.
www.sciencedirect.com 
In sum, the functional anatomy of speech and language

looks quite different now than the classical model has

taught us. Locally highly structured areas are connected

into networks that are themselves organized into proces-

sing streams that support broader computational goals

(e.g. sound to meaning mapping, sound to articulation

mapping) and that are, in turn, bilaterally supported for

many linguistic functions. The research program for the

next years will ask about which basic computations are

executed in the most local circuits and which compu-

tations then group together to generate the linguistic

functions that constitute language, say, syntax, phonol-

ogy, lexical access, or semantics. Structure building — be

it for sound or meaning [14��,53��,54] — requires the
Current Opinion in Neurobiology 2014, 28:142–149
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assembly of elementary representations by elementary

computations, and it is ultimately these basic operations

we are seeking to identify in a new neurobiology of

language.

The temporal view: a linking hypothesis for the
neurobiology of speech perception
For nearly a century, speech perception has been studied

primarily from the perspective of the acoustic signal.

Spectral properties were thought to provide the principal

cues for decoding phonemes, and from these building

blocks words and phrases would be derived. In cognitive

neuroscience studies, the basic intuitions of such a model

are investigated regularly, testing which acoustic-pho-

netic primitives are essential and invariant, acoustic attri-

butes [6�], distinctive features [5,6�,55,56], or phonemes

[57�]. Despite the successes of this research program,

many issues have remained unanswered. One major issue

concerns how the brain extracts the relevant units for

analysis to begin with.
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Speech and other dynamically changing auditory signals

(as well as visual stimuli, including sign) contain crucial

information required for successful decoding that is car-

ried at multiple temporal scales (e.g. intonation-level

information at the scale of 500–2000 ms, syllabic infor-

mation that is closely correlated to the acoustic envelope

of speech, �150–300 ms, and rapidly changing featural

information, �20–80 ms). These different aspects of sig-

nals (slow and fast temporal modulation, frequency com-

position) must be analyzed for successful recognition.

Recent research has aimed to identify the basis for the

required multi-time resolution analysis [58,72]. A series of

recent experiments suggests that intrinsic neuronal oscil-

lations in cortex at ‘privileged’ frequencies (delta 1–3 Hz,

theta 4–8 Hz, low gamma 30–50 Hz) may provide some of

the relevant mechanisms to parse continuous speech into

the necessary chunks for decoding [59�,60–63]. To

achieve parsing of a naturalistic input signal (e.g. speech

signal) into elementary pieces, one ‘mesoscopic-level’

mechanism is suggested to be the sliding and resetting

of temporal windows, implemented as phase locking of
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ograms of stimulus and neural activity illustrate correspondence in

y distribution. (d) Attention dependent processing of a complex speech

 voices. Upper trace: attend to same speaker/stream on different trials.
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low-frequency (delta, theta) activity to the envelope of

speech and phase resetting of the intrinsic oscillations on

privileged time scales [58,64�]. The successful resetting

of neuronal activity, triggered in part by stimulus-driven

spikes, provides time constants (or temporal integration

windows) for parsing and decoding speech signals. Recent

studies link the infrastructure provided by neural oscil-

lations (which reflect neuronal excitability cycles) to basic

perceptual challenges in speech recognition, such as

breaking the continuous input stream into chunks suit-

able for subsequent analysis [59�,63,65].

Two recent studies serve to illustrate the logic of the

research program. Figure 3a [65] shows the data from a

magnetoencephalography (MEG) recording in which

subjects listened to continuous regular or manipulated

speech. The data show the close alignment between the

stimulus envelope and the response from auditory cortex,

as has also been shown in other recent studies [59�,62,63].

How this alignment between speech acoustics and neural

oscillations might underpin intelligibility has been

unclear. This study tested the hypothesis that the ‘sharp-

ness’ of temporal fluctuations in the crucial band envel-

ope was a temporal cue to syllabic rate, driving the

intrinsic delta or theta rhythms to track the stimulus

and thereby facilitating intelligibility. It was observed

that ‘sharp’ events in the stimulus (i.e. auditory edges)

cause cortical rhythms to re-align and parse the stimulus

into syllable-sized chunks for further decoding. Using

MEG recordings it was shown that by removing temporal

fluctuations that occur at the syllabic rate, envelope-

tracking activity is compromised. By artificially reinstat-

ing such temporal fluctuations, envelope-tracking activity

is regained. Crucially, changes in tracking correlate with

stimulus intelligibility. These results suggest that the

sharpness of stimulus edges, as reflected in the cochlear

output, drive oscillatory activity to track and entrain to the

stimulus, at its syllabic rate. This process facilitates par-

sing of the stimulus into meaningful chunks appropriate

for subsequent decoding.

If neuronal activity locks or entrains to stimulus features,

is this process subject to the vagaries of naturalistic

communication, with wandering attention, for example?

Several recent studies have tested this [66�,67–69]; one

result is shown in Figure 3b [69]. This ECog study

investigated the manner in which speech streams are

represented in brain activity and the way that selective

attention governs the representation of speech using the

‘Cocktail Party’ paradigm. It is shown that brain activity

dynamically tracks speech streams using both low-fre-

quency (delta, theta) phase and high-frequency (high

gamma) amplitude fluctuations, and it is argued that

optimal encoding likely combines the two — in the spirit

of multi-time scale processing. Moreover, in and near low-

level auditory cortices, attention modulates the repres-

entation by enhancing cortical tracking of attended

speech streams (Figure 3b). Yet ignored speech remains
www.sciencedirect.com 
represented. Jointly, these studies demonstrate the

potential role that neuronal oscillations may play in the

parsing, decoding, and attending to naturalistic speech

[18].

Conclusion
There has, of course, been exciting progress in other more

neuro-computational studies of language, including

speech production [70], lexical representation and pro-

cessing [(10)], and predictive coding [71�]. This perspect-

ive is necessarily brief and selective. It is fair to say,

however, that in the last 10–15 years, the model of how

language is processed in the brain has changed dramatic-

ally from the classical perspective developed between

1861 (Broca), 1874 (Wernicke), 1885 (Lichtheim), and the

1970s (Geschwind). These changes are a consequence of

a more mature linguistics, psychology, and neuroscience.

It is important to acknowledge the immense contribution

to basic and clinical neuroscience that the classical model

has made — but to acknowledge as well that it cannot be

carried forth as a realistic view on language and the brain.
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