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Reading systematically activates the left lateral occipi-
totemporal sulcus, at a site known as the visual word
form area (VWFA). This site is reproducible across indi-
viduals/scripts, attuned to reading-specific processes,
and partially selective for written strings relative to other
categories such as line drawings. Lesions affecting the
VWFA cause pure alexia, a selective deficit in word
recognition. These findings must be reconciled with
the fact that human genome evolution cannot have been
influenced by such a recent and culturally variable activ-
ity as reading. Capitalizing on recent functional magnetic
resonance imaging experiments, we provide strong cor-
roborating evidence for the hypothesis that reading
acquisition partially recycles a cortical territory evolved
for object and face recognition, the prior properties of
which influenced the form of writing systems.

The visual word form area hypothesis revisited
Nineteenth century neuropsychology [1], as well as 20th
century intracranial recordings [2] and brain imaging [3],
have long associated written word recognition with the left
fusiform gyrus. In 2000, using functional magnetic reso-
nance imaging (fMRI) and event-related potentials in nor-
mal subjects and in two patients with callosal lesions, we
found that reading was associated with the activation of a
precise and reproducible site in the left lateral occipito-
temporal sulcus [4]. Its response was strictly visual and
prelexical [5], yet invariant for location [4] and the case [6]
of the stimulus words. This pattern fitted with the previous
neuropsychological inference of an abstract representation
of the ‘visual word form’; that is, the abstract sequence of
letters that composes a written string [7]. We tentatively
termed this region the visual word form area (VWFA). Both
the name and the concept, however, were challenged on the
grounds that the empirical evidence suggested amixture of
reading and non-reading functions for this region, and that
the whole pattern could be explained by top-down signals
arising from higher level language areas [8,9]. A flurry of
empirical work ensued. In the present article, we review
how the VWFA hypothesis holds up a decade later.
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The neuronal recycling hypothesis
Our starting point for thinking about the VWFA is the fact
that the human brain cannot have evolved a dedicated
mechanism for reading. The invention of writing is too
recent and, until the last century, concerned too small a
fraction of humanity to have influenced the human ge-
nome. Thus, learning to read must involve a ‘neuronal
recycling’ process [10,11] whereby pre-existing cortical
systems are harnessed for the novel task of recognizing
written words. The concept is similar to the notions of
evolutionary ‘exaptation’ [12] or ‘tinkering’ (bricolage) [13],
but we use the term ‘neuronal recycling’ specifically to refer
to educational changes that occur in developmental time
and without any change in the human genetic make-up.

The recycling hypothesis does not postulate any novel
form of learning or plasticity, but it emphasizes that plastic
neuronal changes occur in the context of strong constraints
imposed by the prior evolution of the cortex. Far from being
a tabula rasa or a malleable system capable of learning
almost any regularity [14], the pre-school child’s brain is
tightly organized as a consequence of both genetic con-
straints on cell types, receptor densities or connectivity
patterns, and early internalization of dominant environ-
mental statistics (e.g. those governing object contours).
Education-induced changes must fit within the fringe of
plasticity left open, within some of these cortical systems,
by learning algorithms which are themselves under strong
genetic and connectional constraints. Thus, the recycling
view predicts bidirectional constraints between brain and
culture. On the one hand, reading acquisition should ‘en-
croach’ on particular areas of the cortex – those that
possess the appropriate receptive fields to recognize the
small contrasted shapes that are used as characters, and
the appropriate connections to send this information to
temporal lobe language areas. On the other hand, the
cultural form of writing systems must have evolved in
accordance with the brain’s learnability constraints, con-
verging progressively on a small set of symbol shapes that
can be optimally learned by these particular visual areas.

We have proposed that writing evolved as a recycling of
the ventral visual cortex’s competence for extracting con-
figurations of object contours [10,11]. When projected on
the retina, the contours of objects form typical patterns
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(e.g. T, L, Y) that have been termed ‘non-accidental prop-
erties’ because they tend to be highly invariant across
viewpoints and to provide essential information about
object shapes and spatial relations [15,16]. A T junction,
for example, often signals occlusion of a surface by another.
The visual system relies strongly on such line junctions to
recognize objects, particularly line drawings [15].

In support of this hypothesis, we recently showed that
reading, like object recognition, is specifically impaired
when line configurations are deleted [17,18]. Furthermore,
as predicted, the VWFA overlaps with a subpart of the
ventral visual cortex that exhibits a special sensitivity to
the presence of such line junctions [18]. Also, cross-cultural
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analysis shows that all of the world’s writing and symbol
systems make use of the same set of line junctions, with a
frequency pattern that matches the frequency profile of
natural scenes [19]. These findings suggest that cerebral
constraints have indeed influenced the form of writing
systems, and strengthen the hypothesis that visual word
recognition is recycled from a prior cortical competence for
invariant object recognition.

Is the VWFA ‘specialized’ for reading?
The recycling view clarifies the vexing issue of ‘specializa-
tion’ in the VWFA. Price and Devlin state that ‘neither
neuropsychological nor neuroimaging data are consistent
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with a cortical region specialized for visual word form
representations’ [8] and that ‘vOT [ventral occipitotem-
poral] neuronal populations are not specifically tuned to
orthographic inputs’ [9]. We disagree, but we note that
the debate rests largely on the ill-defined terms ‘speciali-
zation’ and ‘specific’ [20] The recycling view predicts that
reading acquisition should always occur at a reproducible
localization in the visual cortex and with a functional
specialization for reading-specific processes, although
not necessarily with full regional specificity because both
word and object recognition may still be intermixed at the
same cortical site. Recent results have largely supported
these conclusions.

Reproducible localization

Meta-analyses have confirmed that the same region of the
left lateral occipitotemporal sulcus always is activated, to
within a few millimeters, whenever literate humans read
[4,5,21,22]. This localization is surprisingly reproducible
across cultures that vary greatly in reading direction or
type of script (alphabetic, syllabic as in Japanese Kana or
morphosyllabic as in Chinese) [21]. It can be explained by a
combination of early biases that conspire to make this
cortical site nearly optimal for written word recognition,
including: (1) a preference for high-resolution foveal shapes
[23]; (2) sensitivity to line configurations [18]; and (3) a
tight proximity and, presumably, strong reciprocal inter-
connection to spoken language representations in the lat-
eral temporal lobe. The latter constraint is probably
essential. Temporal lobe language representations ante-
date reading; they are already present in 3-month-old
babies [24], and there is now evidence that the hemispheric
lateralization of the VWFA is strongly correlated with the
lateralization of spoken language processing [25–27]. Nev-
ertheless, these constraints act only as biases that can be
overridden. For example, the region exactly symmetrical to
the VWFA, in the right hemisphere, can take over when
the original VWFA site suffers a lesion in childhood [28].
Box 1. Methodological concerns

Our proposal that the visual word form area (VWFA) contains

populations of neurons tuned to orthographic features has been

challenged empirically on the grounds that activation in this region

can be modulated by the lexical, semantic or even pictorial content of

stimuli [8,48,60–63]. In our opinion, some controversies might arise

from inappropriate consideration of the limits of functional magnetic

resonance imaging (fMRI).

First, fMRI has a coarse spatial resolution, especially when

averaging across subjects, and the finding of overlapping activation

in two conditions need not imply that the same circuit has been

activated twice. Averaging across subjects might obscure the

distinction between the VWFA and neighboring areas [64]. Thus,

overlapping activation for written words and for faces [48] or line

drawings [8] does not imply lack of specialization for written words,

but merely tight proximity or even intermingling of the neural circuits

processing these visual categories.

Second, fMRI signals in the ventral visual cortex can be affected by

low-level visual features. Unless very simple images are used, the

number of line junctions is usually much greater in line drawings than

in words, which may explain the strong response to pictures in the

VWFA. This confound can be eliminated by starting with words and

pictures matched for total line length, deleting some segments to

equalize the number of line endings, and scrambling the remaining

segments to create low-level retinotopic controls (Figure 1). Using this
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Functional specialization

Growing evidence confirms that the VWFA performs com-
putations that are unique to reading in the learned script
[29] and cannot be reduced to generic visual recognition
processes (Figure 1). For example, fMRI adaptation shows
that the VWFA is the first cortical site to recognize letters
invariantly in upper and lower case [6,30]. Using letters
that have different shapes in upper and lower case (e.g.
RAGE versus rage), we showed that this property does not
result solely from generic size invariance (e.g. o versus O),
but implies an internalization of arbitrary cultural rules
unique to the Western alphabet [30]. Recently, the VWFA
was also found to be invariant for printed versus hand-
written words [31].

Other evidence for functional specialization includes the
following.
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he VWFA is the only region sensitive to bigram
frequency; that is, it has internalized the statistics of
letter pairings in the participant’s language [32,33].
� T
he VWFA shows a word-specific pattern of orthograph-
ic priming [34], suggesting that it may contain neural
populations sensitive to morphemes or short words in
the reader’s language [35].
� T
he VWFA distinguishes between words and their
mirror images [36,37] – an indispensable feature given
the presence of mirror letters such as b and d in Latin-
based alphabets – but remains mirror-invariant for
pictures and faces.
� A
 similar specialization is seen for Chinese characters in
Chinese readers [38,39].

Most recent results appear compatible with the local

combination detector (LCD) model of the VWFA [35],
according to which a fraction of occipitotemporal neurons
become attuned to fragments of writing (some discrepant
findings are discussed in Box 1). The LCDmodel postulates
a highly parallel process whereby written words are
encoded by a hierarchy of neurons with increasingly larger
cedure, Szwed et al. [18] have consistently observed a stronger

ponse to written words than to pictures in the VWFA and even in

occipital cortex.

hird, because fMRI integrates over a long period of time, increased

RI activation may reflect stronger neural coding, but also increased

-down activation or greater processing time (Box 3). To test

dels of neural coding in the VWFA, it is essential to use short

sentation times and minimal tasks that emphasize bottom-up

cessing (e.g. passive viewing or simple target detection). In this

ation, the VWFA typically responds equally to words and to

tched pseudowords [5,33], and more strongly to frequent than to

requent letters, bigrams or quadrigrams [32,33]. These effects can

reversed, however, when using slower and more complex tasks

g. one-back, phonological judgment or even naming) [60,65]. This

presumably because pseudowords and low-frequency items are

ically processed slowly and therefore induce an elevated level of

ivation throughout the reading circuit [61]. At the very least,

ponse times should be collected in the scanner and regressed out

the fMRI activations before inferences are made about the local

ural code [32]. A recent and surprising finding of subliminal picture-

rd fMRI adaptation in the VWFA [62], which used naming and

fortunately failed to record response times, can be tentatively

lained by assuming shorter processing in repeated than in non-

eated trials, as expected from behavioral studies [66].
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Figure 2. Evidence that the visual word form area (VWFA) plays a causal role in the orthographic stage of reading. (a) Overlap of lesions in six patients with pure alexia (left) and

six patients with right visual field hemianopia but without pure alexia (middle) (after [70]). Subtraction (right) reveals that the location most predictive of pure alexia coincides

with the VWFA (white crosshair, peak of the meta-analysis from [22]). (b) In implanted epileptic patients, focal cortical stimulation at sites close to the VWFA yields transient

alexia. The figure shows a ventral view of the brain of a single patient in whom stimulation at the yellow spot yielded alexia without any associated object naming impairment

(after [76]; note that on this three-dimensional view of the ventral side of the brain, the left hemisphere appears on the right). (c) Functional magnetic resonance imaging (fMRI)

correlates of pure alexia in a single-case study. A minute surgical resection in the left occipitotemporal region (top left) caused letter-by-letter reading, as indexed by a positive

correlation between reading latencies and word length (lower left), together with selective disappearance of word-related fMRI activations (right) (after [75]).
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receptive fields, successively tuned to abstract letter iden-
tities, bigrams (ordered pairs of letters), morphemes and
small words [35]. fMRI has confirmed the existence of a
tuning gradient [33], with successive responses to letter
identity [30], bigrams [32] and small words [34]. The
hypothesis that all of a word’s letters are processed in
parallel has been confirmed behaviorally [40] and by brain
imaging [41].

Following a lesion of the VWFA or its connections, effi-
cient parallel processing of letter strings vanishes and a
severe visual reading impairment known as pure alexia
ensues (Figure 2 and Box 2). Pure alexia can be global or
with letter-by-letter reading. Functionally, letter-by-letter
reading, which also occurs in normal subjects when reading
rotated or degradedwords, arises not from the VWFA itself,
but from the deployment of additional top-downprocesses of
serial orientation of spatial attention, associated with acti-
vation of the posterior parietal cortex [31,42].
Partial regional specificity

We fully agree with Price and Devlin [8,9] that the VWFA
does not respond solely to written words. Even in fluent
readers, it continues to respond to other visual categories
that strongly activate the surrounding cortices, including
objects and faces [8,29,37,43–45]. Precisely as expected
from the recycling hypothesis, line drawings, which typi-
cally contain an uncontrolled number of line junctions, are
particularly good at activating the VWFA [8,37,43,45].
Nevertheless, when drawings are matched in visual com-
plexity to written words, a significantly stronger response
to written words emerges in the left VWFA [18,44]. Fur-
thermore, when using high resolution fMRI and single-
subject analyses, some VWFA voxels exhibit a greater
response to the known script than to line drawings, strings
of digits or unknown characters [18,29,44]. As expected
from our theory, such regional specificity increases with
reading speed and expertise [45]. Reading acquisition also
257



Box 2. The causal role of the visual word form area in efficient reading

Lesion and interference studies have demonstrated the causal role of

the visual word form area (VWFA) in reading. According to our

model, a lesion in the VWFA should result in the loss of the ability

efficiently to identify strings of letters, irrespective of their lexical

status, whereas speech production and comprehension as well as

writing abilities should be spared. This pattern corresponds

precisely to the syndrome of pure alexia as described more than a

century ago [1]. Perception of the equivalence of upper and lower

case letters may be lost [67], but features irrelevant to the invariant

recognition of letter identities, such as handwriting style [68], are

processed normally. Studies of lesion overlap in patients with left

occipitotemporal stroke confirm that injury to the VWFA accurately

predicts the occurrence of pure alexia (PA) [69–71] (Figure 2a),

although it may also result from VWFA deffarentation [72–74].

Gaillard et al. [75] compared reading performance and fMRI

activations before and after a minute left occipitotemporal resection,

which showed that PA is related to the selective disappearance of

occipitotemporal word-related activations (Figure 3c). Similarly,

focal cortical inactivation of the VWFA by intracranial electrical

stimulation can yield alexia in the absence of any object naming

deficit [76] (Figure 3b).

In many cases of PA, the reading deficit vastly exceeds any other

visual impairment. The most striking illustration of such functional

specialization is provided by global alexic patients who are incapable

of naming single letters but can fluently identify faces, objects or even

Arabic numerals [1]. Some case reports of PA have described

concomitant visual deficits affecting stimuli other than alphabetic

strings and proposed that this observation supports a ‘general visual’

as opposed to a ‘domain-specific’ theory of PA. However, the

existence of associated deficits is by itself of limited interest, because

brain lesions should not be expected to respect the exact boundaries

of the VWFA. Demonstrating a necessary association between PA and

another deficit would shed more light on the computations performed

by the VWFA, but even this would not necessarily contradict the

neuronal recycling view of the VWFA, because the recycled cortex is

expected to still contribute to the encoding of other non-alphabetic

visual objects. It is even possible that the fine tuning of the visual

cortex that accompanies reading acquisition [45] benefits other

perceptual abilities. This might explain the reduced performance

with line drawings observed in some PA patients with a lesion in the

VWFA [71], and the decreased activation of the VWFA by words and

drawings seen in dyslexic subjects [63].
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leads to increased activation in occipital areas, including
the primary visual cortex, in response to print and to other
categories of visual stimuli such as checkerboards
[18,45,46].
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How learning to read transforms the VWFA
We directly tested the VWFA’s role in literacy by compar-
ing functional brain organization in illiterate versus liter-
ate adults [45]. Activation at the precise coordinates of the
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s). (b) The VWFA activation increase with literacy was replicated in a distinct block
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ggesting a competition between the nascent orthographic code and prior visual
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VWFA, in response to either written sentences or individ-
ual pseudowords, was the main correlate of reading ability
(Figure 3). Even after searching for the most active peak in
each subject, enhancement of the response to letter strings
was seen in this region, predictive of about one-half of the
variance in reading speed across participants. Remark-
ably, with increasing literacy we also observed a small but
significant decrease in responses to faces at the VWFA.
Activation to faces was displaced to the right hemispheric
fusiform gyrus, where it increased with literacy. Similarly,
Cantlon et al. [47], in an fMRI study of four-year-olds,
found that performance in identifying digits or letters was
correlated with a decrease in responses to faces in the left
lateral fusiform gyrus. Both observations support the ex-
istence of competition for cortical space between the na-
scent VWFA and the pre-existing neural coding of other
categories, particularly faces. Faces and written words
activate very close or even overlapping sectors of the
ventral visual cortex [48], probably because of the demands
they both place on high-resolution foveal processing [23].

Scanning of ‘ex-illiterate’ adults who learned to read
during adulthood has demonstrated that the VWFA is
highly plastic, even in adults, and quickly enhances its
response to letter strings as soon as the rudiments of
reading are in place [45] (Figure 3). A longitudinal study
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of kindergarten children supports this conclusion [46];
eight weeks of training with the GraphoGame – a comput-
erized grapheme-phoneme training program – for a total of
approximately 3.6 hours sufficed to enhance the response
to letter strings relative to false fonts in the VWFA.
Interestingly, VWFA specialization fails in dyslexic chil-
dren [49,50], although whether this is a cause or a conse-
quence of the reading deficit remains uncertain, because
dyslexia seems to be primarily imputable to a phonological
deficit in a majority of cases [51].

Reading acquisition can be simulated by training edu-
cated adults to recognize a new script [52–54]. These
studies confirm the VWFA as a major neural correlate of
literacy acquisition, capable of quickly increasing its re-
sponse after just a few reading sessions. Interestingly,
purely visual exposure by itself is insufficient; left VWFA
changes occur only with systematic attention to the corre-
spondences between print and speech sounds [52–54].
Thus, the emphasis that the LCD model places on the
visual determinants of VWFA organization has to be qual-
ified [55]. There is increasing evidence that the VWFA is
selected, at least in part, because of its ‘projective field’ to
language areas, and that its response is shaped not only by
bottom-up statistics such as bigram frequency [32,33], but
also by factors such as phonological neighborhood size and
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Box 3. Top-down activation of the visual word form area during spoken language processing

The visual word form area (VWFA) belongs to the ventral visual

pathway and is thus typically inactive during auditory stimulation; for

example, when listening passively to spoken words [5,64]. However,

recent functional magnetic resonance imaging observations indicate

that it can, under some circumstances, be activated in a top-down

manner during spoken language tasks. These observations are not

inconsistent with the VWFA hypothesis. Rather, they indicate that

literacy provides an optional orthographic code for language in the

VWFA [45] that can be mobilized when needed to facilitate speech

processing. They do not support the broad claim that the VWFA is not

‘specialized’ for orthographic processing [8].

In Yoncheva et al.’s elegant study [77], participants listened to

composite stimuli comprising an auditory word and a tone triplet. In

distinct blocks, they compared the same stimuli for their speech

content or for their tonal content. Although both auditory tasks led to

a broad deactivation of bilateral visual areas relative to rest, only

selective attention to speech led to a deactivation everywhere but in

the VWFA (Figure 4a).

The possibility of activating the VWFA in a top-down manner from

spoken inputs was confirmed by our recent study of the functional

impact of literacy [45]; during a spoken lexical decision task, the

VWFA was activated only in literate subjects, in direct relation to the

subject’s reading performance (Figure 4b). The direct relation with

reading scores, focal activation restricted to the left lateral occipito-

temporal cortex, and the absence of activation in illiterates help to

refute an alternative interpretation in terms of visual imagery for

imageable words. It is probable that the observed activation

corresponds to top-down recruitment of an orthographic code for

the sequence of letters spelling the word, and not the activation of

amodal lexical or semantic representations. There is, however,

continuing debate about whether top-down effects activate the VWFA

selectively or also activate the more lateral sectors of the inferior

temporal cortex (the lateral inferotemporal multimodal area) [64].

In our study of literacy [45], the VWFA failed to activate in the same

adult literate participants during passive listening to simple sen-

tences. This important observation suggests that top-down recruit-

ment of the VWFA is optional and deployed only during difficult tasks

such as lexical decision [45], rhyming [78] or spelling [64]. Interest-

ingly, top-down VWFA activation is absent in children with dyslexia

[78], suggesting that an inability to form bidirectional links between

phonology and orthography is also an important component of

impaired reading acquisition.

Box 4. Questions for further research

� What is the neural code for words in the visual word form

area (VWFA)? Do some neurons become tuned to individual letters

and letter groups [35]? Is this tuning demonstrably influenced by

the grapheme-to-phoneme correspondences of the target lan-

guage?

� What is the role of top-down projections in creating the VWFA in

literate brains? Are top-down inputs from phonological coding

regions of the superior temporal gyrus essential for reading

acquisition? Do they affect merely the late interactive dynamics

of VWFA activity, as proposed by Price and Devlin [9], or also the

local feed-forward tuning curves of VWFA neurons, as we propose

[35]?

� What are the precise connections of the VWFA? Does this site

project preferentially to language areas, even before we learn to

read, and can its connectivity pattern explain its specific role in

written word recognition [59]?

� Are there systematic parallels between face and word recognition in

the fusiform gyrus? Can a system of specialized cortical patches be

identified for word recognition, as in the monkey face recognition

system [79]? Does reading specifically recycle the face recognition

system, and if so, why? It is simply because face and word

recognition place similar demands on high resolution foveal proces-

sing? Or is it because this region connects to areas encoding facial

movements, which might be essential for phoneme perception [80]?
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syllable count [56]. Indeed, the VWFA can be activated in a
purely top-down manner during some speech processing
tasks (Box 3).

A remarkable observation also supports this conclusion:
in blind subjects, Braille reading specifically activates the
VWFA relative to a tactile control task [57]. This area is
therefore ‘meta-modal’; it may possess a general capacity
for identifying shapes, whether visual or tactile, and map-
ping them onto language areas. The fact that the mosaic of
ventral occipitotemporal preferences for written words and
for category-specific knowledge of animals versus objects
[58] remains present in people who are blind suggests that
purely bottom-up visual factors are not the sole determi-
nants of its organization. Rather, both receptive and pro-
jective connectivity, including top-down projections, must
constrain the emergence of specialization in this region
[59].

Challenges for future research
In conclusion, recent research confirms the VWFA as a
major, reproducible site of visual orthographic knowledge.
However, much remains to be discovered regarding how
the neural code in this area changes with literacy, plausi-
bly under the influence of top-down constraints arising
from spoken language and motor areas (Box 4). An impor-
tant challenge for future research is the development of
techniques to characterize the tuning curves and projective
260
fields of neurons in the VWFA. Characterizing them before
and after reading would help to explain howwe acquire the
evolutionarily unexpected feat of reading.
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