

AMATH242/CS371

Outline

• Matlab Overview

• Useful Commands

• Matrix Construction and Flow Control

• Script/Function Files

• Basic Graphics

• Guidelines for Assignment Questions

2 / 54

AMATH242/CS371

Getting to Matlab

Everyone who is registered in the course should have an
account in the undergrad environment

This permits you to login to any machine (Macs, xterms) in
the 2nd and 3rd floor of MC

You can also login into the undergrad machines from home

http://www.cs.uwaterloo.ca/cscf/student/

Your WatIAM password and user ID should work

Problems: see consultants in MC3011

3 / 54

AMATH242/CS371

What is Matlab?

According to The Mathworks:

MATLAB is an integrated technical computing environment
that combines numeric computation, advanced graphics and
visualization, and a high-level programming language.

MATLAB includes hundreds of functions for:

Data analysis and visualization
Numeric and symbolic computation
Engineering and scientific graphics
Modeling, simulation, and prototyping
Programming, application development, and GUI design

4 / 54

AMATH242/CS371

Getting Started

Web resources

Course Web page (Matlab Primer)
www.mathworks.com

Books

Mastering Matlab 5/6/7, D. Hanselman, B. Littlefield
Introduction to Scientific Computing, Van Loan
See also the course web site for other sources

5 / 54

AMATH242/CS371

Running Matlab

Macs/PCs (running Matlab locally)

type: matlab

If using xterm/remote from home: at the UNIX prompt:

Don’t type: matlab
- graphical desktop, slow
Instead, type: matlab -nodesktop -nosplash
-text interface, faster
(other options: matlab -h)

Reset the display permissions if you see the message
Xlib: connection to "x.uwaterloo.ca:0.0" refused by

server

Xlib: Client is not authorized to connect to Server

Use Matlab 5.3 or later for all assignments

6 / 54

AMATH242/CS371

@rees[102]% matlab -nodesktop -nosplash

< M A T L A B >

Copyright 1984-2002 The MathWorks, Inc.

Version 6.5.0.180913a Release 13

Jun 18 2002

To get started, type one of these: helpwin, helpdesk, or demo.

For product information, visit www.mathworks.com.

>>

7 / 54

AMATH242/CS371

How does Matlab work?

Interactive environment

Type commands at the prompt (‘>>’ typically)

Case sensitive

External programs/functions are in M-files (text files with a
.m extension)

Execute M-files by typing the filename (without the .m)

Note: Almost everything in Matlab is an external function
(use the which command to locate the source)

8 / 54

AMATH242/CS371

Basic Operations

‘Matrix’ is the only data type

Vectors are 1× N or N × 1 matrices

Scalars are 1× 1 matrices

Addition and subtraction operate entry-wise, while

* ^ \ /

are matrix operations (unless preceded by a dot).

Matrices and vectors are 1-offset

9 / 54

AMATH242/CS371

Basic Example 1

>> A = [1 2 3 ; 4 5 6]

A =

1 2 3

4 5 6

>> test = A*A

??? Error using ==> *

Inner matrix dimensions must agree.

>> test = A*A’

test =

14 32

32 77

10 / 54

AMATH242/CS371

Basic Example 2

>> A = [1 2 ; 3 4]

A =

1 2

3 4

>> A^2

ans =

7 10

15 22

>> A.^2

ans =

1 4

9 16

11 / 54

AMATH242/CS371

Transposes

Strictly, A’ is complex conjugate transpose of A

Usual (non-conjugate) transpose is A.’

>> A = [1+i, 2+2i, 3+3i]

A =

1.0000 + 1.0000i 2.0000 + 2.0000i 3.0000 + 3.0000i

>> A’

ans =

1.0000 - 1.0000i

2.0000 - 2.0000i

3.0000 - 3.0000i

>> A.’

ans =

1.0000 + 1.0000i

2.0000 + 2.0000i

3.0000 + 3.0000i

12 / 54

AMATH242/CS371

More dots

>> A = [1 2; 3 5]

A =

1 2

3 5

>> B = [-5 2; 3 -1]

B =

-5 2

3 -1

>> A*B

ans =

1 0

0 1

>> A.*B

ans =

-5 4

9 -5

13 / 54

AMATH242/CS371

Basic Example 3 - Solving Ax=b

>> A = [1,15,4; 2,15,20; 3,30,9];

>> b = [1;22;9];

>> x=A\b

x =

6.0667

-0.5867

0.9333

>> x=inv(A)*b

x =

6.0667

-0.5867

0.9333

14 / 54

AMATH242/CS371

Useful commands

help - Obtain help for a specific function

lookfor - Keyword search of help text

more {on/off} - Paging

clear - Remove variables

close - Close figure windows

whos - List currently defined variables

format - Set output format (e.g., number of digits)

% - comment line in an M-file

15 / 54

AMATH242/CS371

help

help function - Gives detailed information about ‘function’

Displays the comments at the top of the M-file

Some of the help screens read like UNIX man pages

Related items are listed at the end

Despite the help text, all commands are lower case

Useful command to use when you are stuck

help - Provides a list of topics which can then be searched

16 / 54

AMATH242/CS371

lookfor

First command to use when you are stuck

lookfor XYZ - Searches the first comment line for the string
XYZ

Useful if you do not know the function name, but expect that
the function exists

Can be slow

17 / 54

AMATH242/CS371

more

more {on/off}
Turn screen paging on or off

Works like the Unix more command

18 / 54

AMATH242/CS371

clear

clear X - Remove the variable X

clear X* - Remove all variables starting with string X

clear - Remove all variables

clear all - Removes everything (variables, functions, globals
and MEX links)

Often useful at the beginning of script files

To clear command window: clc

19 / 54

AMATH242/CS371

close

close - Close the current figure

close all - Close all figure windows

Useful at the start of script files

20 / 54

AMATH242/CS371

whos

who - list all variables

whos - list all variables, with size information

>> whos

Name Size Bytes Class

ans 1x17 34 char array

x 14x21 2352 double array

y 14x22 2464 double array

z 14x21 2352 double array

Grand total is 913 elements using 7202 bytes

Useful if you keep getting array size mismatches (remember that
Matlab is 1-offset)

21 / 54

AMATH242/CS371

format

>> 1/3

ans =

0.3333

>> format long

>> 1/3

ans =

0.33333333333333

>> format short e

>> 1/3

ans =

3.3333e-01

help format

22 / 54

AMATH242/CS371

Command line tricks

Up/Down arrow keys to cycle through commands

Partially typing a command and hitting up arrow will search
the command stack

Can type multi-line commands, but each line is saved
separately (ie. not very useful for re-entering loop commands)

A command can span two lines by using ... at the end of the
first line

23 / 54

AMATH242/CS371

Constructing Matrices

Type in all the numbers directly (semi-colons or new lines
create new rows)

Use ones or zeros

Use the colon notation

start:step:final (e.g. 3:2:7 = [3 5 7])
steps can be negative (e.g. 7:-2:3 = [7 5 3])
start:final assumes a step of 1
colon by itself means ‘all’ (eg. A(1,:) is all entries in row 1)

A variety of other methods exist (load, algebra, other
functions)

Note that vectors and arrays are dynamic

24 / 54

AMATH242/CS371

Example

>> m1 = zeros(1,3)

m1 =

0 0 0

>> m2 = ones(3)

m2 =

1 1 1

1 1 1

1 1 1

>> m3(2:3,:) = [m2(3,:); [1:1:3]]

m3 =

0 0 0

1 1 1

1 2 3

25 / 54

AMATH242/CS371

Dimensions of Matrices and Vectors

size(A) for matrices, length(x) for vectors

>> A = [1 2 3; 4 5 6]

A =

1 2 3

4 5 6

>> [m n] = size(A)

m =

2

n =

3

>> x = [1 2 3 4]

x =

1 2 3 4

>> length(x)

ans =

4

26 / 54

AMATH242/CS371

Control Structures

For statements:

FOR I = 1:N,

FOR J = 1:N,

A(I,J) = 1/(I+J-1);

END

END

While loops

WHILE X > 1,

X = X - 1;

END

27 / 54

AMATH242/CS371

Control Structures (cont.)

IF statements

IF expression

statements

ELSEIF expression

statements

.

.

.

ELSE

statements

END

28 / 54

AMATH242/CS371

Relational and Logical Operators

Relational operators

< <= > >= == ~= (in C: !=)

Logical operators

Matlab C

AND & &&

OR | ||

NOT ~ !

>> A = 1:9

A =

1 2 3 4 5 6 7 8 9

>> tf = (A>2)&(A<6)

tf =

0 0 1 1 1 0 0 0 0

29 / 54

AMATH242/CS371

Vectorizing Loops

>> cs371marks = [24 36 11 42 33 55 30];

>> for i=1:length(cs335marks)

cs371marks(i) = 10*cs371marks(i)^(1/2);

end

>> cs371marks

cs371marks =

48.9898 60.0000 33.1662 64.8074 57.4456

74.1620 54.7723

>> cs371marks = [24 36 11 42 33 55 30];

>> cs371marks = 10*cs371marks.^(1/2)

cs371marks =

48.9898 60.0000 33.1662 64.8074 57.4456

74.1620 54.7723

30 / 54

AMATH242/CS371

Script files

Matlab commands can be placed in text files with .m
extensions

The commands are interpreted/executed when the filename is
typed at the Matlab prompt (no .m extension)

The effect is identical to typing the commands (i.e. all new
variables remain, all old variables are accessible)

Convenient if the same set of commands need to be executed
wth minor changes

Commonly used for ‘driver’ programs on assignments

31 / 54

AMATH242/CS371

Script Example

clear all;

close all;

% Initial data

x = [9 8 7 3 1 1 2 5 8 7 5];

y = [4 2 1 2 5 7 9 11 9 8 7];

n = length(x);

% Initialize t

t = zeros(size(x));

% Choose t to be arclength

for i = 2:n

dt = sqrt((x(i)-x(i-1))^2 + (y(i)-y(i-1))^2);

t(i) = t(i-1) +dt;

end

32 / 54

AMATH242/CS371

Function Files

Defined in text files with .m extensions

Called by typing the filename (no .m)

Functions do not have access to existing variables (separate
scope)

Functions can accept/return zero or more values

Control is lost when the end of the file is reached, or the
command return is encountered

33 / 54

AMATH242/CS371

Function Example

function [newmarks] = bell(oldmarks, method)

% Whatever appears here is displayed when the user

% types ‘help bell’

% This line will not appear in the help text

if method == 1

newmarks = 10*oldmarks.^(1/2);

elseif method == 2

newmarks = oldmarks + 10*ones(1, length(oldmarks));

else

newmarks = oldmarks;

end

return

34 / 54

AMATH242/CS371

Function Example

>> help bell

Whatever appears here is displayed when the user

types ‘help bell’

>> m = [23 67 43 49 75 55];

>> bell(m,1)

ans =

47.9583 81.8535 65.5744 70.0000 86.6025 74.1620

>> m_new = bell(m,2)

m_new =

33 77 53 59 85 65

35 / 54

AMATH242/CS371

Debugging

See help debug

Set a breakpoint with dbstop

Trace through the execution with dbstep

Show the execution stack with dbstack

Continue execution with dbcont

Quit debugging with dbquit

36 / 54

AMATH242/CS371

Text Strings

Use single quotes to define text: ’string’

Use disp to display text without the associated variable name
(also works for variables)

Can have an array of strings if each string has the same length

Can convert from numbers to strings using the num2str
command

>> a = 1;

>> b = 5;

>> t = [’Plot ’ num2str(a) ’ of ’ num2str(b)];

>> disp(t)

Plot 1 of 5

37 / 54

AMATH242/CS371

Graphics

Matlab has excellent graphics support for experimenting with
data

Since the data is ‘live’, you can quickly and easily change
plots and figures

Figure windows can easily be saved and printed (as eps or pdf
for assignments)

Figures can be edited by clicking on edit in Figure Window

38 / 54

AMATH242/CS371

Plots

plot(x,y) - Basic plotting command

plot(x,y,’opts’)- opts specifies characteristics of the
curve (color, style and data markers)

help plot - Details on options available

Can plot multiple curves on a single figure:
plot(x1,y1,’opt1’,x2,y2,’opt2’)

or use hold on

Can add title, axis labels and legend with appropriate
commands

39 / 54

AMATH242/CS371

2D plots

>> x = [1:1:10];

>> y_lin = x;

>> y_quad = x.^2;

>> subplot(2,1,1), plot(x,y_lin,’bo:’)

>> title(’Linear Function’)

>> xlabel(’X axis’)

>> ylabel(’Y axis’)

>> subplot(2,1,2), plot(x,y_quad,’r+-’)

>> print -deps fig1.eps

>> close

40 / 54

AMATH242/CS371

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
Linear Function

X axis

Y
 a

xi
s

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

41 / 54

AMATH242/CS371

2D plots (cont.)

>> x=linspace(1,10,10);

>> y_lin = x

y_lin =

1 2 3 4 5 6 7 8 9 10

>> y_log = logspace(0,1,10) % 10^[equally spaced 0..1]

y_log =

Columns 1 through 6

1.0000 1.2915 1.6681 2.1544 2.7826 3.5938

Columns 7 through 10

4.6416 5.9948 7.7426 10.0000

>> plot(x,y_lin,’*-.’)

>> hold on

>> plot(x,y_log,’x--’)

>> axis([0 15 0 11])

>> legend(’linear’, ’exponential’)

42 / 54

AMATH242/CS371

0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

11

linear
exponential

43 / 54

AMATH242/CS371

3D plots

>> figure

>> x=[0:2*pi/20:2*pi];

>> y=x;

>> z=sin(x)’*cos(y);

>> surf(x,y,z)

>> colormap(’bone’)

>> view(-30,30)

>> print -deps mesh3d.eps

44 / 54

AMATH242/CS371

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

−1

−0.5

0

0.5

1

45 / 54

AMATH242/CS371

Formatting Your Plots

In your Matlab home directory, please create a file called
startup.m that contains the following lines:

set(0,’DefaultLineLineWidth’,3,...

’DefaultTextFontSize’,12,’DefaultTextFontWeight’,’bold’,...

’DefaultAxesFontSize’,12,’DefaultAxesFontWeight’,’bold’);

This makes your plots more legible when printed out, since you will
be submitting hard copies.
Also, please label your axes, and make a legend when appropriate.

46 / 54

AMATH242/CS371

Guidelines for Assignment Questions

Prepare a single script for each question, unless additional
functions are required or otherwise specified.

Submit a hard copy of all of your plots and code, but do not
submit command window output unless otherwise specified.

Leave enough space between different programs, or start with
a new page for a different program.

For each script and plot, indicate clearly the corresponding
part of the question you are solving for.

Format your plots properly as mentioned before, and make
them large enough to show details.

Presentation will affect your grade

47 / 54

AMATH242/CS371

Guidelines for Assignment Questions

Simplify your code whenever possible

Use matrix operations instead of loops
Define variables only when necessary, avoid redundant variables
Simplified codes usually mean more efficiency, and sometimes
give you more accuracy
The best discipline for making sure you understand something
is to simplify it, simplify it relentlessly. – L.N. Trefethen

Always comment your code, unless it is straight forward

Explain the variables you defined
Explain what your code is trying to do, whether it is a single
line or the whole .m file

48 / 54

AMATH242/CS371

Efficiency Issues

Vectorize loops whenever possible

Pre-allocate arrays whenever possible

We will be checking for efficient code on assignments if we
mention this specifically

Otherwise, don’t worry too much about this (but your code
may take a long time (:)

49 / 54

AMATH242/CS371

Vectorization Example: Monte Carlo Simulation
Slow code:

...

S_new = zeros(N_sim,1);

for m=1:N_sim % simulation loop

S = S_init;

%

% one path

%

for i=1:N % timestep loop

S = S + S*(drift + sigma_sqrt_delt*randn(1,1));

S = max(0.0, S);

% check to make sure that S_new cannot be < 0

end % timestep loop

S_new(m,1) = S;

end % simulation loop
50 / 54

AMATH242/CS371

Vectorization Example: Monte Carlo Simulation
Fast code:

...

S_new = zeros(N_sim,1);

S_old(1:N_sim,1) = S_init;

for i=1:N % timestep loop

% now, for each timestep, generate info for

% all simulations

% now, only one explicit loop, second loop

% replaced by vector commands

S_new(:,1) = S_old(:,1) +...

S_old(:,1).*(drift + sigma_sqrt_delt*randn(N_sim,1));

S_new(:,1) = max(0.0, S_new(:,1));

% check to make sure that S_new cannot be < 0

S_old(:,1) = S_new(:,1);

end % timestep loop
51 / 54

AMATH242/CS371

Once Again:: Matlab is Matrix Oriented

Most common source of errors

All entities in Matlab are matrices by default

A common cause of errors: size mismatch

>> a = 1;

>> size(a)

ans =

1 1

This sometimes causes unexpected results when multiplying
objects

There is a difference between a row vector and a column
vector!

Usual rules for matrix multiplication must be followed

52 / 54

AMATH242/CS371

Examples:

>> a = [1 2 3]; b = [4 5 6];

>> a’*b

ans =

4 5 6

8 10 12

12 15 18

>> a*b’

ans =

32

>> a*b

??? Error using ==> mtimes

Inner matrix dimensions must agree.

53 / 54

AMATH242/CS371

Summary

Use help and lookfor on a regular basis

Use more on and semi-colons to maintain an intelligible display

When interpreting error messages, remember that all variables
are matrices

Use script files and functions to automate repetitive tasks
(anything over 5 lines should probably be in an M-file)

→ On assignments, you should hand in hard copy
of all M-files used

Try to use operations on vectors/matrices, instead of loop
constructs

54 / 54

