TOBB University of Economics and Technology
Department of Computer Engineering

BiL401/501 Distributed Data Processing and Analysis
Spring 2016

Homework 1

Due by Feb 2 (Tuesday) 24:00

Subject: Pairs and Stripes design pattern
(Adapted from Jimmy Lin’s class at Waterloo)

By now, you should already be familiar with HortonWorks sandbox (e.g., submitting jobs) and using
Maven to organize/compile your assignments.

Before staring this assignment, it is highly recommended that you look at the implementations of
bigram relative frequency and co-occurrence matrix computation in Bespin.

In this assignment you'll be computing pointwise mutual information, which is a function of two
events x and y:

PMI(z, y) = log -2&Y)_

p(z)p(y)

The larger the magnitude of PMI for x and y is, the more information you know about the probability
of seeing y having just seen x (and vice-versa, since PMI is symmetrical). If seeing x gives you no
information about seeing y, then x and y are independent and the PMl is zero.

Write a program (two separate implementations, actually—more details below) that computes the
PMI of words in the http://www.gutenberg.org/cache/epub/100/pg100.txt (The Complete Works of
William Shakespeare) collection you used in the previous assignment. Your implementation should
be in Java. To be more specific, the event we're after is x occurring on a line in the file (the
denominator above) or x and y co-occurring on a line (the numerator above). That is, if a line
contains "A B C", then the co-occurring pairs are:

* (A B)
(A, C)
(B, A)
(B,C)
(C,A)
(C,B)

If the line contains "A A B C", the co-occurring pairs are still the same as above; same if the line
contains "A B C A B C"; or any combinations of A, B, and C in any order.

A few additional important details:

* Toreduce the number of spurious pairs, we are only interested in pairs of words that co-occur in
ten or more lines.

* Toreduce the computational complexity of the problem, we are only going to consider up to the
first 200 words in each line.

* Just so everyone's answer is consistent, please use log base 10.

Use the same definition of "word" as in the word count demo. Just to make sure we're all on the



same page, use this as the starting point of your mapper:

@Override
public void map(LongWritable key, Text value, Context context)
throws |IOException, InterruptedException {
String line = ((Text) value).toString();
StringTokenizer itr = new StringTokenizer(line);

intcnt=0;
Set set = Sets.newHashSet();
while (itr.hasMoreTokens()) {
cnt++;
String w = itr.nextToken().toLowerCase().replaceAll("(*[*a-z]+| [*a-z]+S)", "");
if (w.length() == 0) continue;
set.add(w);
if (cnt >=100) break;

String[] words = new String[set.size()];
words = set.toArray(words);

// Your code goes here...

You will build two versions of the program (put both in the same package):
1. A'"pairs" implementation. The implementation must use combiners. Name this
implementation PairsPMI.
2. A'stripes" implementation. The implementation must use combiners. Name this
implementation StripesPMI.

Since PMI is symmetrical, PMI(x, y) = PMI(y, x). However, it's actually easier in your implementation
to compute both values, so don't worry about duplicates. Also, use TextOutputFormat so the results
of your program are human readable.

Make sure that the pairs implementation and the stripes implementation give the same answers!
Answer the following questions:

Question 1. Briefly describe in prose your solution, both the pairs and stripes implementation. For
example: how many MapReduce jobs? What are the input records? What are the intermediate key-
value pairs? What are the final output records? A paragraph for each implementation is about the
expected length.

Question 2. What is the running time of the complete pairs implementation? What is the running
time of the complete stripes implementation? (Tell me where you ran these experiments, in the lab
computers, or your own laptop, or somewhere else).

Question 3. Now disable all combiners. What is the running time of the complete pairs
implementation now? What is the running time of the complete stripes implementation? (Tell me

where you ran these experiments, in the lab computers, or your own laptop, or somewhere else).

Question 4. How many distinct PMI pairs did you extract?




Question 5. What's the pair (x, y) (or pairs if there are ties) with the highest PMI? Write a sentence or
two to explain why such a high PMI.

Question 6. What are the three words that have the highest PMI with "tears" and "death"? And what
are the PMI values?

Note that you can compute the answer to questions 4—6 however you wish: a helper Java program,
a Python script, command-line one-liner, etc.

Upload and submit your assignment via your git repository account. Name the repo tobb-etu-
bigdata-course. Put all your assignment submissions under this repo (asgl, asg2, ..., asgN). In the
assignment submission subdirectory (tobb-etu-bigdata-course/asg2) have a readme file explaining
programs, input/output files, and also your answers to the above questions 1-6.

Upload date/time should be before the submission date/time to get full credit. 10 points are
deducted for each late day, and your submission is not accepted after 2 late-days unless permitted
by the instructor for legitimate excuses.

Share your git account with the instructor (edogdu@github, erdogandogdu@bitbucket).



