Intro to Racket & Java

i.ebayimg.com/007/s/MTA2NIgXNjAwW/z/y4wAAOSW~bFWOCYW/$ 35.IPG

Please take a handout &
Sit in row H or lower

CS 60, Spring 2016 Week 1, Class 2

How do we learn a new
programming language?

What kinds of things do we want to know first?

What does it feel like as you learn a new PL?

Racket

Why are we
learning Racket?

Dr. Racket
?um ;'\'\e)oro\c)ro\m!
an Integrated Development Environment (IDE) for Racket l

[JON] Untitled - DrRacket

Untitledv (define ..) ¥ Debug @] Check Syntax ¢ Macro Stepper WPl Run[> Stop .']

a#lang racket ——0)Doi\er)o\o\;'e: H\e version OP’RQc\?J' we're usi

”cle-\?mi)'ions” <i.e., Fr03rqms> 9o \nere

Welcome to DrRacket, version 6.2.1 [3m].
Language: racket [custom]; memory limit: 128 MB.
>

”in)'ero\c)'ions” 30 \'\ere

32 15590MB[| @

Racket: “primitive” values

e integers

e booleans
only false s false

e real numbers
e strings
o (lots more, non-primitive values)

Racket: operations

(op argi arg: .. argn)

e Rules:
e the operation always comes first
e itsarguments (if there are any) follow the operation
e NO commas between arguments
o everything goes between parentheses

e common mistakes:
o forgetting parentheses
e rationalvs. integer division (/ vs. quotient)

e equality (=vs. equal?)

Racket: “variables”

They’re called variables, but we won’t vary them (i.e., their values are constant)

(let* ([var:i expri]

[varn exprn])
body)

Racket: conditionals

(if conditional-expr (cond [condition; expri]
true-expr
false-expr) condition, expry]
else else-expr])

this is the most common form

idiom: if you have more than one condition, use cond

Racket: functions

(define (function-name parameter: . parametery)
body)

Exercise: write factorial in Racket

/

n! = <

\

1 n =20

n*(n—1)! :otherwise

Syntax reminders:

(define (factorial n)

your code here

)

(op arg: arg: .. argn)

(let* ([var:i expri]

[var, exprn])
body)

(if conditional-expr
true-expr
false-expr)

(cond [condition: expri]

[condition, exprn]
[else else-expr])

Exercise: write factorial in Racket

(1 n =20

n! = < .
| (n —1)! : otherwise

(define (fact n)
(if (= n 9)
1
(* n (fact (- n1)))))

sum in Racket

r

0 :n =0

sum(n) = <
() n 4+ sum(n — 1) : otherwise

\

(define (sum n)
(if (= n 9)
0
(+ n (sum (- n 1)))))

fibonacci in Racket

1 n =1
fib(n) =<1 n =2
fib(n —2) + fib(n —1) ::n > 2

(define (fib n)
(cond [(=n 1) 1]
(= n 2) 1]
else (+ (fib (- n 1)) (fib (- n 2)))]))

Java

Expressions vs. Statements

Expressions produce values

2+2 Math.sin(5*y)

Ilhell + II'L'LOII

Statements change something

System.out.println(“Hello, world!”);

count = count+1;

Java: Variables

Imperative variables vary!
But you have to “introduce” them before you can use them.

new vo‘ria)o\e with ini)’io\\ value new value For he vo\rio\)o\e
l |

type var = expr; var = expr,

type var;

T

new vo\ria)v\e ooiHN

introducing new variables modifying existing variables
(declaration statements) (assignment statements)

Recall

j int count = 0;
{ while (count < LIMIT) {

System.out.println("I’m excited about CS 60!"); }
count = count + 1; ﬁ

Java: conditional statements

if (condition) { if (condition:) {
statements statements;

} } else if (condition,) {

statements

if (condition) { } else {
statements: statements:;

} else { ;
statements: amasoen

Java: while loops

while (condition) {
statements

j int count = 0;
{ while (count < LIMIT) {

System.out.println("I’m excited about CS 60!"); }
count = count + 1; :

What's the difference?

if (condition) { while (condition) {

statements statements

{if Ccount < LIMIT) {

System.out.println("I’m excited about CS 6@!");1
count = count + 1; {

* System.out.println("I’m excited about CS 60!");
count = count + 1; :

Java: for loops

int count = 0;

while (count < LIMIT) {
System.out.println("I’m excited about CS 60!");
count = count + 1;

Have you ever forgotten
the line:
count = count + 1;

for (int c¢ount = @; count < LIMIT; count = count+l) {
System.out.println("I’m excited about CS 60!");

}

Could you replace this line
count = count + 1;
with
count++;

for (int count = @; count < LIMIT; count++) {
System.out.println("I’m excited about CS 60!");

}

Java: Non-Recursive Factorial

Since we haven’t said how to define functions yet!

The goal: set answer to be n!

1nt answer = °

for (int i —; 1.n i++) {

answer = answer *

Exercise: sum n numbers in Java

n

answer = E 1

i=1
=14+2+---+n

int answer 0;

1; 1 <= n; i++) {

for (int i
answer = answer + 1;

Tracing Execution in Java

Suppose n is initially 3. What answer is computed?

| int thisFib = 1; |
| int nextFib |
| for (int 1 =1; i < n; i++) {
l int prevFib = thisFib;

thisFib = nextFib; |
nextFib = prevFib + thisFib;]

Il

,
L

,

;, }

i 1nt answer = thisFib; |

Compare & Contrast

Conditionals - Why the difference?

Conditional expressions in Racket always have 3 parts
(if conditional-expr
true-expr
false-expr)

Conditional statements in Java are more varied.

if (condition) {
statements;

} else {
statements;

if (condition) {
statements

[s Java more Loopy than Racket?

Loops are used all the time in Java.

You won't see while loops in Racket.

(while)
Why not?

What does Racket do instead?

