
CS 60, Spring 2016

Intro to Racket & Java

Please take a handout &
Sit in row H or lower

Week 1, Class 2

i.ebayimg.com/00/s/MTA2NlgxNjAw/z/y4wAAOSw~bFWOCyW/$_35.JPG

How do we learn a new
programming language?
What kinds of things do we want to know first?

What does it feel like as you learn a new PL?

Racket

Why are we  
learning Racket?

an Integrated Development Environment (IDE) for Racket

Dr. Racket

“definitions” (i.e., programs) go here

“interactions” go here

boilerplate: the version of Racket we’re using

Run the program!

Racket: “primitive” values

• integers

• booleans
only false is false

• real numbers

• strings

• (lots more, non-primitive values)

Racket: operations

• Rules:
• the operation always comes first
• its arguments (if there are any) follow the operation
• no commas between arguments
• everything goes between parentheses

• common mistakes:
• forgetting parentheses
• rational vs. integer division (/ vs. quotient)
• equality (= vs. equal?)

(op	arg1	arg2	…	argn)

Racket: “variables”
They’re called variables, but we won’t vary them (i.e., their values are constant)

(let*	([var1	expr1]	
								…	
							[varn	exprn])	
		body)

“scope” of variables

“bind” a value to a variable

Racket: conditionals

idiom: if you have more than one condition, use cond

(if	conditional-expr 
				true-expr 
				false-expr)

(cond		[condition1	expr1]	
							…	
							[conditionn	exprn]	
							[else	else-expr])

this is the most common form

Racket: functions

(define	(function-name	parameter1	…	parametern)	
			body)

n! =

(
1 : n = 0

n ⇤ (n� 1)! : otherwise

Exercise: write factorial in Racket

(define	(factorial	n)	
			…	
			your	code	here	
			…)

Syntax reminders:
(op	arg1	arg2	…	argn)	

(let*	([var1	expr1]	
								…	
							[varn	exprn])	
		body)	

(if	conditional-expr 
				true-expr 
				false-expr)	

(cond	[condition1	expr1]	
							…	
						[conditionn	exprn]	
						[else	else-expr])

n! =

(
1 : n = 0

n ⇤ (n� 1)! : otherwise

Exercise: write factorial in Racket

(define	(fact	n)	
		(if	(=	n	0)	
						1	
						(*	n	(fact	(-	n	1)))))

sum in Racket

(define	(sum	n)	
		(if	(=	n	0)	
						0	
						(+	n	(sum	(-	n	1)))))

fibonacci in Racket

(define	(fib	n)	
		(cond	[(=	n	1)	1]	
								[(=	n	2)	1]	
								[else	(+	(fib	(-	n	1))	(fib	(-	n	2)))]))

upload.wikimedia.org/wikipedia/commons/8/8c/Key_break.jpg

Java

Expressions vs. Statements

Expressions produce values

2+2 Math.sin(5*y)

"he" + "llo"

Statements change something

System.out.println(“Hello, world!”);

count = count+1;

Java: Variables
Imperative variables vary!  
But you have to “introduce” them before you can use them.

type	var	=	expr;	

introducing new variables  
(declaration statements)

new variable with initial value

type	var;	

new variable with

modifying existing variables 
(assignment statements)

var	=	expr;	

new value for the variable

Recall

declaration
declaration

assignment

Java: conditional statements

if	(condition)	{	
statements	

}

if	(condition1)	{	
statements1	

}	else	if	(condition2)	{	
statements2	

}	else	{	
statements3	

}
and so on

if	(condition)	{	
statements1	

}	else	{	
statements2	

}

Java: while loops

while	(condition)	{	
statements	

}

What’s the difference?

if	(condition)	{	
statements	

}

while	(condition)	{	
statements	

}

Java: for loops

Have	you	ever	forgotten	
the	line:

count = count + 1; Yes!

Could	you	replace	this	line
count = count + 1;

with
count++;Yes!

Since we haven’t said how to define functions yet!

Java: Non-Recursive Factorial

?
? ?

The goal: set answer to be n!

Exercise: sum n numbers in Java

int	answer	=	0;	
for	(int	i	=	1;	i	<=	n;	i++)	{	
				answer	=	answer	+	i;	
}

answer =
n�

i=1

i

= 1 + 2 + · · · + n

Tracing Execution in Java

Suppose n is initially 3. What answer is computed?

Compare & Contrast

Conditionals - Why the difference?

(if	conditional-expr 
				true-expr 
				false-expr)

Conditional expressions in Racket always have 3 parts

if	(condition)	{	
statements	

}

if	(condition)	{	
statements1	

}	else	{	
statements2	

}

Conditional statements in Java are more varied.

Is Java more Loopy than Racket?

You won’t see while loops in Racket.

 (while … …)
Why not?

Loops are used all the time in Java.

What does Racket do instead?

