
Math 432 – Topological Spaces Homework 4 Solutions

1. A map f : X → Y is said to be an open map is for every open set U of X, the set f(U) is open in
Y . Show that π1 : X × Y → X is an open map.

Solution: Let U × V be an open set of X × Y . I will show that π1(U × V ) = U is open in X. If V
is empty, then U × V is empty and the image of the empty set is the empty set, so that U is open in
X. If V is non-empty, then let y ∈ V . For every x ∈ U , (x, y) ∈ U × V , and so there exists a basis
element of X × Y , call it B1 × B2, such that (x, y) ∈ B1 × B2 ⊆ U × V . To see that B1 ⊆ U , we see
that if a ∈ B1, then (a, y) ∈ B1 × B2 ⊆ U × V , so that a ∈ U . By definition of basis elements, B1 is
an open subset of X. Thus for every x ∈ U , there exists an open set B1 of X such that x ∈ B1 ⊆ U .
By Homework 3 Problem 8, we have that U is open in X, so that π1 is indeed an open map. �

2. Show that the countable collection

{(a, b)× (c, d)|a < b, and c < d, a, b, c, d ∈ Q}

is a basis for R2 with the standard topology.

Solution: Let B = {(a, b) × (c, d)|a < b, and c < d, a, b, c, d ∈ Q}. Let T be the standard topology
on R2, with basis B′ = {(a, b) × (c, d)|a < b, and c < d, a, b, c, d ∈ R}. By Theorem 15.1, since the
set {(a, b)|a < b, a, b ∈ R}, is a basis for the standard topology on R, we know that indeed B′ is a
basis for the standard topology on R2. Let TB be the topology generated by B. Let x × y ∈ R2. Let
B ∈ B such that x × y ∈ B. Clearly B ∈ B′ as well, so that x × y ∈ B ⊆ B. By Lemma 13.3,
T ⊇ TB. Let x′ × y′ ∈ R2 and B′ ∈ B′ such that x′ × y′ ∈ B′. We know that B′ = (a′, b′) × (c′, d′)
where a′, b′, c′, d′ ∈ R. By density or rationals in R, there exists a, b, c, d ∈ Q such that a ∈ (a′, x′),
b ∈ (x′, b′), c ∈ (c′, y′), and d ∈ (y′, d′). By construction, x′ × y′ ∈ (a, b)× (c, d) ⊆ (a′, b′)× (c′, d′), and
since (a, b)× (c, d) ∈ B, we have that TB ⊇ T . Thus TB = T and indeed B is a basis for T . �

3. If L is a straight line in the plane, describe the topology L inherits as a subspace of Rl × R and as a
subspace of Rl × Rl. In each case it is a familiar topology.

Solution: A line L in the plane has the form of (x, y) ∈ R2. Points on non-vertical lines are uniquely
determined by their x coordinate, whereas points on vertical lines are uniquely determined by their y
coordinates.

First, consider a line L as a subspace of Rl × R. A basis for open sets in Rl × R are open sets of the
form [a, b)× (c, d) where a, b, c, d ∈ R and a < b, c < d. To find the open sets of L, we have to consider
the non-empty intersections of L with these open sets. First we will consider non-vertical lines. Let

x1 = inf{x : (x, y) ∈ L ∩ [a, b)× (c, d)}

x2 = sup{x : (x, y) ∈ L ∩ [a, b)× (c, d)}.

We will call the corresponding y-values, y1 and y2.

Case one: L first intersects the open rectangle on the left hand side i.e. x1 = a. In this case, the
point has the form (a, y1) where c < y1 < d. This point is in the open rectangle above. To leave the
rectangle, we will either have x > b or y < c or y > d. Because of the strict inequalities, x2 /∈ the
rectangle . Thus the open sets are of the form [x1, x2) ∈ L.

Case two: L first intersects the open rectangle on the bottom or top side, i.e. y1 = c or y1 = d. This
point is not in the open rectangle above. Again, to leave the rectangle either will have x > b or y > d
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or x < c. Because of the strict inequalities, x2 /∈ the rectangle. Thus the open sets are of the form
(x1, x2) ∈ L.

Thus on any non-vertical lines, the open sets are those that would be open in the lower limit topology,
and thus we have induced the lower limit topology.

Now for vertical lines: If L has the form x = k, then L ∩ [a, b)× (c, d) will either be empty or will be
points of the from (k, y) where c < y < d. This means open sets on vertical lines are the same as those
corresponding to open sets in R with the standard topology.

Now, consider a line L as a subspace of Rl × Rl A basis for open sets in Rl × Rl are open sets of the
form [a, b)× [c, d) where a, b, c, d ∈ R and a < b, c < d

First, consider lines with positive slope, horizontal and vertical lines.

Case one: L first intersects the open rectangle on the left hand side i.e. x1 = a. This case applies to
all horizontal lines and some with positive slope. In this case, the point has the form (a, y1) where
c < y1 < d. This point is in the open rectangle above. To leave the rectangle, we will either have x > b
or y > d. (We can’t have y < c because of the positive slope). Because of the strict inequalities, x2 /∈
the rectangle . Thus the open sets are of the form [x1, x2) ∈ L.

Case two: L first intersects the open rectangle on the bottom side, i.e. y = c. Because of positive
slope, we cannot first intersect at top. This case applies to all vertical lines and the rest with positive
slope. This point is in the open rectangle above. Again, to leave the rectangle either will have x > b
or y > d. Because of the strict inequalities, x2 /∈ the rectangle. Thus the open sets are of the form
[x1, x2) ∈ L.

This for all lines with non-negative (possibly infinite) slope, we have that the induced topology in the
lower limit topology.

Finally, let L be a line with negative slope. Let (x, y) ∈ L and let R = [x, x+ 1)× [y, y + 1) which is
open in Rl×Rl. Then L∩R = {(x, y)}. This is true for arbitrary |{(x, y)} ∈ L, thus L has the discrete
topology.

4. Let X be an ordered set in the order topology. Show that (a, b) ⊆ [a, b]. Under what conditions does
the equality hold?
Solution:
Lemma: [a, b] is a closed set containing (a, b).
Proof of Lemma: X − [a, b] = (−∞, a) ∪ (b,∞), which is open since it is the union of two open sets
and thus [a, b] is closed. Now, let x ∈ (a, b) then a < x < b so clearly a ≤ x ≤ b so x is in [a, b]. Thus
[a, b] is a closed set containing (a, b).

Now, to show (a, b) ⊆ [a, b], recall that (a, b) is the intersection of all closed sets containing (a, b). Then
let x ∈ (a, b) then x is in every closed set containing (a, b) and [a, b] is a closed set containing (a, b) so
x ∈ [a, b] as needed.

Let a+ = inf{x : x > a} and let b− = sup{x : x < b}. Consider the closed set [x, y]. If [x, y] contains
(a, b), then x ≤ a+ and y ≥ b−. Thus there exists a closed set containing (a, b) that does not contain
a or b if and only if a+ 6= a or b− 6= b. This is true exactly when a has an immediate successor or b
has an immediate predecessor. For example, in the order topology on Z, (1, 4) = [2, 3] ( [1, 4].

5. Let Aα be a subset of a space X. Decide if ∩Aα = ∩Aα. If not, is one a subset of the other?

Solution: Let Aα be a subset of a space X for every index α. I claim that ∩Aα ⊆ ∩Aα. Let x ∈ ∩Aα.
Let U be an open set containing x. By Theorem 17.5, U must intersect ∩Aα at some point y, so that
y ∈ (∩Aα) ∩ U . Since y ∈ ∩Aα, y ∈ Aα for every index α. Thus for every open set U containing x,
U ∩ Aα is non-empty for every index α. By Theorem 17.5 we have that x ∈ Aα for every α. Thus
x ∈ ∩Aα.
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The converse, however, is not true. Let X = R. Let A = (−1, 0) and B = (0, 1) be intervals. Then
A = [−1, 0] and B = [0, 1], so that A ∩ B = {0}. However, A ∩B = ∅ = ∅, since ∅ is closed. Clearly,
{0} is not a subset of ∅, and thus it is not necessarily true that the intersection of closures is a subset
of the closure of the intersection. �

6. In the finite complement topology on R, to what point or points does the sequence xn = 1/n converge?

Solution: I claim that in finite complement topology, the sequence xn = 1/n converges to every
number in R. Let r ∈ R. Let U ⊆ R be an open set containing r. Consider the set S = {n ∈ N|1/n ∈
R \ U}. If S is empty, let N = 1, and we have that for all n ≥ N , 1/n ∈ U , so that xn converges to r.
If S is non-empty, S must be finite since it is a subset of the complement of U . Let m be the maximum
of S, and set N = m+ 1. Clearly, if n ≥ N , then 1/n /∈ S by choice of N , and thus 1/n must be in U .
Thus xn converges to r. Either way, xn converges to r, and we have that xn converges to every real
number. �

7. Show that the T1 axiom is equivalent to the condition for each pair of points of X, each has a neigh-
borhood not containing the other.

Solution: Let X be a topological space. Suppose that X satisfies the T1 axiom. Let x, y be two
distinct points in X. Then we know that {x} is closed and {y} since finite point sets are closed. But
then X \ {x} is open and contains y, and X \ {y} is open and contains x. Clearly these are two
neighborhoods of x, y such that neither neighborhood contains the other point.

Now suppose that for each distinct x, y ∈ X, each has a neighborhood not containing the other point.
It suffices to show that single point sets are closed in order to show that finite point sets are closed,
since the finite union of closed sets is closed. Let x ∈ X. Consider X \ {x}. Let y ∈ X \ {x}. By
assumption, there is a neighborhood U of y that does not contain x. Then y ∈ U ⊆ X \ {x}. Thus by
Homework 3 Problem 8, X \ {x} is open. Thus {x} is closed, as desired. �

8. Prove that for functions f : R→ R, the ε− δ definition of continuity implies the open set definition.

Solution: Let f : R→ R such that f satisfies the ε− δ definition of continuity. Let U be an open set
of R. I will show that f−1(U) is open in R. Let x ∈ f−1(U). By definition, f(x) ∈ U . Since U is open,
there exists a basis element (a, b) of R such that f(x) ∈ (a, b) ⊆ U . Let ε = min{f(x) − a, b − f(x)}.
Consider the interval (f(x)−ε, f(x)+ε). To see that (f(x)−ε, f(x)+ε) ⊆ (a, b), notice that if ε = f(x)−
a, then (f(x)−ε, f(x)+ε) = (a, 2f(x)−a) ⊆ (a, b) since 2f(x)−a ≤ b because f(x)−a ≤ b−f(x) by our
choice of ε. Similarly, if ε = b−f(x), then (f(x)−ε, f(x)+ε) = (2f(x)−b, b) ⊆ (a, b) since 2f(x)−b ≥ a
because b−f(x) ≤ f(x)−a by our choice of epsilon. So indeed (f(x)−ε, f(x)+ε) ⊆ (a, b). By the ε−δ
criterion for continuity, there exists δ > 0 such that if z ∈ (x−δ, x+δ), then f(z) ∈ (f(x)−ε, f(x)+ε).
Since (f(x)− ε, f(x) + ε) ⊆ (a, b) ⊆ U , this means that for all z ∈ (x− δ, x+ δ), f(z) ∈ U , so that by
definition (x− δ, x+ δ) ⊆ f−1(U). Thus we have found a basis element containing x that is contained
in f−1(U). Since this is true for arbitrary x ∈ f−1(U), we have shown that f−1(U) is open. �

9. Suppose f : X → Y is continuous. If x is a limit point of the subset A of X, is it necessarily true that
f(x) is a limit point of f(A)?

Solution:
First attempt: Assume f : X → Y is continuous and x is a limit point of the subset A of X. Let V be
a neighborhood of f(x). Then since f is continuous, U = f−1(V ) is a neighborhood of x. Thus there
exists y ∈ U ∩ A with y 6= x. Since y ∈ U , f(y) ∈ f(U) ∈ V and since y ∈ A, f(y) ∈ f(A). But! f(y)
might not be different than f(x). This allows us to create a counterexample:

Let f : [0, 1] → R be defined by f(x) = 1. Then 0 is a limit point of A = (0, 1) but f(0) = 1 is not a
limit point of f(A) = {1}, since every neighborhood of 1 only intersects {1} in a single point, 1 itself.
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10. Let F : X × Y → Z. We say that F is continuous in each variable separately if for each y0
in Y , the map h : X → Z defined by h(x) = F (x × y0) is continuous, and for each x0 in X, the
map k : Y → Z defined by k(y) = F (x0 × y) is continuous. Show that if F is continuous, then F is
continuous in each variable separately.
Solution: If F is continuous, the the restriction of F to any subspace is continuous. So G = F |X×{y0}
is continuous. Let V be an open set in Z then G−1(Z) is open in X×{yo} which means G−1(Z) can be
written as U ×{y0} where U is open in X. Then we have that h−1(V ) = U . And thus h is continuous.
The proof for k is analogous.

11. Let F : R× R→ R be defined by the equation

F (x× y) =

{
xy/(x2 + y2) if x× y 6= 0× 0

0 if x× y = 0× 0

(a) Show that F is continuous in each variable separately.

(b) Compute the function g : R→ R defined by g(x) = F (x× x).

(c) Show that F is not continuous (using techniques of this class).

Solution:

(a) To show this, we will show that the topological definition of continuity if equivalent to the δ − ε
definition, and then just use techniques of calculus to show this function is continuous. We showed
that the δ − ε definition implies our definition, so now we just show the converse. Let f : X → Y
be a continuous function, where X = Y = R. For x ∈ X, and ε > 0, consider the open set
V = (f(x)−ε, f(x)+ε) in Y . Since f in continuous, U = f−1(V ) is an open set in X that contains
x. Therefore there exists a basis element (a, b) such that x ∈ (a, b) ⊆ U . Let δ = min(x−a, b−x),
then x ∈ (x − δ, x + δ) ⊆ (a, b) ⊆ (U) so f(x − δ, x + δ) ⊆ f(U) ⊆ V = (f(x) − ε, f(x) + ε),
satisfying the δ − ε definition of continuity.

Now, consider h(x) = F (x, y0). If y0 = 0, the functions looks like

h(x) = F (x× 0) =

{
0/(x2) if x 6= 0

0 if x = 0

It is easy to see that this is the same as h(x) = 0 which is continuous. When y0 6= 0,

h(x) = F (x× y0) = xy0/(x
2 + y20).

We know using techniques from calculus that this is a continuous functions since it is the quotient
of continuous functions where the denominator is nonzero.
Since F (x, y) is symmetric in x and y, we will get that k(y) = F (x0, y) is also continuous.

(b) The function

g(x) = F (x× x) =

{
x2/(x2 + x2) if x 6= 0

0 if x = 0

=

{
1/2 if x 6= 0

0 if x = 0

which is clearly not continuous.

(c) If F were continuous, then it restriction to the subset {(x, y) ∈ R2 : x = y} would be continuous,
but this would mean g is continuous, which it clearly isn’t. Therefore, F must not be continuous.
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12. Let R∞ be the subset of Rω consisting of all sequences that are “eventually zero,” that is, all sequences
(x1, x2. . . . ) such that xi 6= 0 for only finitely many of i. values of i. What is the closure of R∞ in Rω
in the box and product topologies? Justify your answer.

Solution: Let R∞ = {(xn) ∈ Rω|xi 6= 0 for only finitely many i}. When considering Rω in the
product topology, R∞ = Rω, that is the closure of R∞ is the entire space Rω. To see this, we just
need to show that Rω ⊆ R∞. Suppose (yn) ∈ Rω. Let B be a basis element of Rω under the product
topology such that (yn) ∈ B. By definition of product topology, B =

∏
n∈N Un where Un 6= R for only

finitely many n. Thus we can construct a sequence (xn) where xn = 0 if Un = R and xn is an element
of Un if Un 6= R. By construction, if xn 6= 0, then Un 6= R. Thus the set of all n such that xn 6= 0 is a
subset of the {m ∈ N|Um 6= R}, where the latter set is finite. Since subsets of finite sets are finite, this
means that xn 6= 0 for only finitely many n. So (xn) ∈ B ∩ R∞, and thus we have shown that every
basis element containing (yn) intersects R∞. By Theorem 17.5, (yn) ∈ R∞, and thus indeed we have
that R∞ = Rω.

Now when considering Rω in the box topology, I claim that R∞ = R∞. It suffices to show that R∞ is
closed. Consider the complement Rω \ R∞. Let (xn) ∈ Rω \ R∞. Then (xn) is a sequence such that
xn 6= 0 for infinitely many n. Define S = {n ∈ N|xn 6= 0}. And for each n ∈ S, define Sn = (0, xn + 1)
if xn > 0 and Sn = (xn − 1, 0) if xn < 0. Now for each n ∈ N, define Un = Sn if n ∈ S, and Un = R
if n /∈ S. Clearly, U =

∏
n∈N Un is a basis element of Rω under the box topology because each Un is

open. By construction, xn ∈ Un for all n ∈ S because xn ∈ (xn − 1, 0) if xn < 0 and xn ∈ (0, xn + 1)
if xn > 0. Also, xn ∈ Un for all n /∈ S because Un = R for n /∈ S. Thus (xn) ∈ U . Now to see that
U ⊆ Rω \ R∞, consider an element (yn) ∈ U . For each n ∈ S, yn 6= 0 because yn ∈ Un = Sn. Since S
is infinite, there are infinitely many n such that yn 6= 0, and thus (yn) cannot be in R∞. Thus indeed
(yn) ∈ Rω \R∞, so that U ⊆ Rω \R∞ and (xn) ∈ U . Thus for every element of Rω \R∞, we can find a
basis element containing that element which is contained in Rω \ R∞. By definition Rω \ R∞ is open,
and thus R∞ is closed. So R∞ = R∞. �

13. Given sequences (a1, a2, . . . ) and (b1, b2, . . . ) of real numbers with ai > 0 for all i, define h : Rω → Rω
by the equation

h((x1, x2, . . . )) = (a1x1 + b1, a2x2 + b2, . . . ).

Show that if Rω is given the product topology, h is a homeomorphism of Rω with itself. What happens
if Rω is given the box topology.

Solution: It is easy to see that h is a bijection. The function h−1 is defined by

h((y1, y2, . . . )) = ((y1 − b1)/a1, (y2 − b2)/a2, . . . ).

To show that h and h−1 are both continuous, we can show that open sets in a basis get mapped to
open sets for both. Let U be an open set in Rω of the form U =

∏
Ui, where finitely many Ui = (ci, di)

and the rest are R. Let Vi = (ai(ci) + bi, ai(di) + bi if Ui 6= R and Vi = R otherwise. Note that Vi is
open and only finitely many will not be R. If given x if xi ∈ Ui then h(x)i ∈ Vi. So x ∈

∏
Vi. Also

if y ∈ Vi, h
−1(y) ∈ Ui, (when viewed as either the pre-image or the inverse). Thus h(U) = V and

h−1(V ) = U and therefore h is an homeomorphism in the product topology. If we remove the property
that only finitely many Ui are not R, everything still works, thus this is also a homeomorphism in the
box topology.
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