Angel Burr

Theorem: Let $f: X \to Y$; let Y be compact Hausdorff. Then f is continuous if and only if the **graph** of f

$$G_f = \{x \times f(x) \mid x \in X\}$$

is closed in $X \times Y$.

Lemma: If Y is compact then the projection $\pi_1: X \times Y \to X$ is a closed map.

Proof. Assume Y is compact. Let $C \subseteq X \times Y$ be closed. Then $(X \times Y) \setminus C$ is open. Let $x_0 \in X \setminus \pi_1(C)$. This implies $(x_0 \times Y) \cap C = \emptyset$. Since Y is compact and $x_0 \times Y$ is homemorphic to Y, $x_0 \times Y$ is compact. Since $(x_0 \times Y) \cap C = \emptyset$ and $(X \times Y) \setminus C$ is open, For each $y \in Y$, $\exists U_y \times V_y$ s.t. $(x_0 \times y) \in U_y \times V_y$ and $(U_y \times V_y) \cap C = \emptyset$. This provides an open cover of $x_0 \times Y$, then there exists a finite subcover, $U_{y_1} \times V_{y_1}, ..., U_{y_n} \times V_{y_n}$, whose union is disjoint from C. Let $U = \bigcap_{i=1}^n U_{y_i}$, then U is an open neighborhood of x_0 s.t. $U \subseteq X \setminus \pi_1(C)$. Thus $\pi_1(C)$ is closed. \Box

Now we prove the theorem.

Proof. ⇒ Assume *f* is continuous. Let $x_0 \times y_0 \in (X \times Y) \setminus G_f$. Then $f(x_0) \neq y_0$. Since *Y* is Hausdorff $\exists V_0$ and *V*, disjoint open neighborhoods of y_0 and $f(x_0)$ respectively. Then $f^{-1}(V) \times V_0$ is an open neighborhood of $x_0 \times y_0$ and since $V \cap V_0 = \emptyset$, $(f^{-1}(V) \times V_0) \subseteq (X \times Y) \setminus G_f$. Therefore G_f is closed in $X \times Y$.

 $\begin{array}{l} \Leftarrow \text{ Assume } G_f \text{ is closed.} \\ \text{Let } x_0 \in X. \text{ Let } V \text{ be a neighborhood of } f(x_0) \text{ in } Y. \\ \text{Then } Y \setminus V \text{ is closed, so } X \times (Y \setminus V) \text{ is closed.} \\ \text{Since } G_f \text{ is closed, } (X \times (Y \setminus V)) \cap G_f \text{ is closed.} \\ \text{Let } U \text{ be the compliment of the image under } \pi_1 \text{ of this set.} \\ \text{By our lemma } U \text{ is open, and for each } x \in U, \ x \times f(x) \notin (X \times (Y \setminus V)). \\ \text{Thus } f(U) \subseteq V \text{ therefore } f \text{ is continuous.} \end{array}$