\$17.6 A, B, A_{α} are substes of X, prove:

- 1. $A \subset B \Rightarrow \overline{A} \subset \overline{B}$
- 2. $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- 3. $\overline{\bigcup A_{\alpha}} \supset \bigcup \overline{A_{\alpha}}$

Proof

1. $A \subset B \Rightarrow \overline{A} \subset \overline{B}$

 $B \subset \overline{B} \Rightarrow A \subset B \subset \overline{B}$, and \overline{B} is closed. Recall the definition of closure, \overline{A} is the intersection of all closed sets containing A. Since $A \subset \overline{B}$ and \overline{B} is closed, therefore $\overline{A} \subset \overline{B}$

- 2. $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$

Since $A \subset \overline{A}$ and $B \subset \overline{B}$, then $A \cup B \subset \overline{A} \cup \overline{B}$ for $\forall x \in A \cup B, x \in \overline{A}$ or $x \in \overline{B}$. Since $\overline{A} \cup \overline{B}$ is a union of two closed sets, so $\overline{A} \cup \overline{B}$ is closed. Since $\overline{A} \cup \overline{B}$ is a closed set containing $A \cup B$, $\overline{A} \cup \overline{B} \subset \overline{A} \cup \overline{B}$.

 $\bullet \ \overline{A \cup B} \supset \overline{A} \cup \overline{B}$

 $A \subset A \cup B \Rightarrow \overline{A} \subset \overline{A \cup B}$ from (1). Similarly, $\overline{B} \subset \overline{A \cup B}$. Let $x \in \overline{A} \cup \overline{B}$, then $x \in \overline{A}$ or $x \in \overline{B}$. In either case, $x \in \overline{A \cup B}$. So $\overline{A \cup B} \supset \overline{A} \cup \overline{B}$.

Therefore, $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

3. $\overline{\bigcup A_{\alpha}} \supset \bigcup \overline{A}_{\alpha}$

(The proof is analog to (2), here I provide another approach)

Let $x \in \bigcup \overline{A}_{\alpha}$, then $\exists \overline{A}_{\alpha} : x \in \overline{A}_{\alpha}$. Then for any nbhd of x, U satisfies that U intersects $A_{\alpha} \Rightarrow U$ intersects $A_{\alpha} = A$. By Theorem 17.5, $A_{\alpha} = A$.

To see why the equality does not hold, consider $A_i = \{1/i\}$ where $i \in \mathbb{Z}_+$. Then $\overline{\bigcup A_i} = \{1/i|i \in \mathbb{Z}_+\} \cup \{0\}$ And $\overline{A_i}$ is $\{1/i\}$ itself $\Rightarrow \bigcup \overline{A_i} = \{1/i|i \in \mathbb{Z}_+\}$. Therefore $\overline{\bigcup A_i} \nsubseteq \bigcup \overline{A_i}$