Math 432 – Topological Spaces

For each problem below, please submit well-written, complete sentence solutions. **PROBLEM 1,2,4,5, or 7 will be on the quiz on Friday.**

- 1. Prove that is X is an ordered set in which every closed interval is compact, then X has the least upper bound property.
- 2. Let \mathbb{R}_K denote \mathbb{R} with the K-topology.
 - (a) Show that [0,1] is not compact as a subspace of \mathbb{R}_K .
 - (b) Show that \mathbb{R}_K is connected.
 - (c) Show that \mathbb{R}_K is not path connected.
- 3. Let A_0 be the closed interval [0,1] in \mathbb{R} . Let A_1 ne the set obtained from A_0 by deleting its "middle third" (1/3, 2/3). Let A_2 be the set obtained from A_1 by deleting its "middle thirds" (1/9, 2/9) and (7/9, 8/9). In general, define A_n by the equation

$$A_n = A_n - 1 - \bigcup_{k=0}^{\infty} \left(\frac{1+3k}{3^n}, \frac{2+3k}{3^n} \right).$$

The intersection

$$C = \cap_{z \in \mathbb{Z}} A_n$$

is called the **Cantor set**; it is a subspace of [0, 1].

- (a) Show that C is totally disconnected (see page 152 #5).
- (b) Show that C is compact.
- (c) Show that each set A_n is a union of finitely many disjoint closed intervals of length $1/3^n$; and show that the end points of these intervals lie in C.
- (d) Show that C has no isolated points.
- (e) Conclude that C is uncountable.
- 4. Show that the rationals \mathbb{Q} are not locally compact.
- 5. Let X be a locally compact space. If $f : X \to Y$ is continuous, does it follow that f(X) is locally compact? What is f is both continuous and open? Justify your answer.
- 6. Show that $[0,1]^{\omega}$ is not locally compact in the uniform topology.
- 7. Show that the one point compactification of \mathbb{Z}_+ is homeomorphic with the subspace $\{0\} \cup \{1/n | n \in \mathbb{Z}_+\}$ of \mathbb{R} .
- 8. Read through examples 3, 4 and 5, in section 30. Write a short paragraph describing what you've read.
- 9. Show that if X has a countable basis $\{B_n\}$ then every basis C for X contains a countable basis for X.
- 10. Let X have a countable basis; let A be an uncountable subset of X Show that uncountably many points of A are limit points of A.
- 11. Let $f: X \to Y$ be a continuous open map. Show that if X satisfies the first or the second countability axiom, then f(X) satisfies the same axiom.
- 12. Show that \mathbb{R}^{ω} in the uniform topology satisfies the first countability axiom but not the second.

- 13. Show that if X is regular, every pair of points of X have neighborhoods whose closures are disjoint.
- 14. Let $p: X \to Y$ be a closed continuous surjective map such that $p^{-1}\{y\}$ is compact for each $y \in Y$. (Such a map is called a *perfect map*.)
 - (a) Show that is X is Hausdorff, then so is Y.
 - (b) Show that is X is regular, then so is Y.
 - (c) Show that is X is locally compact, then so is Y.
 - (d) Show that is X is second-countable, then so is Y. (See hint in book).
- 15. (GRAD) Prove the following. You may need to reference section 22 which we did not cover.
 - (a) If $p: X \to Y$ os a quotient map and if Z is a locally compact Hausdorff space, then the map

$$\pi = p \times i_Z : X \times Z \to Y \times Z$$

is a quotient map. (See hint in book).

- (b) Let p: A to B and $q: C \to D$ be quotient maps. If B and C are locally compact Hausdorff spaces, then $p \times q: A \times C \to B \times D$ is a quotient map.
- 16. (GRAD) Give \mathbb{R}^{ω} the box topology. Let \mathbb{Q}^{∞} denote the subspace consisting of sequences of rationals that end in an infinite string of 0's. Which of our four countability axioms does this space satisfy?