Math 432 – Topological Spaces Presentation 2: Section 32 Exercise 4

Ria Granzier

Ex 4: Show that every regular Lindelof space is normal.

Proof: Let X be a regular Lindelof space. Let A and B be closed subsets of X. Since X is regular we know that for each $a \in A$ there exists an open neighborhood U_a of a such that $\overline{U_a} \subset X - B$. Similarly, for each $b \in B$ there exists an open neighborhood V_b of b such that $\overline{V_b} \subset X - A$. The set $\{U_a : a \in A\}$ covers A and $\{V_b : b \in B\}$ covers B. Also since A and B are closed subspaces of a Lindelof space they are Lindelof spaces themselves. Thus there exist countable subcovers of A and B, U and V, such that $U = \{U_1, U_2, ...\}$ and $V = \{V_1, V_2, ...\}$. Next define:

$$W_{1} = \{U_{1} \cap \bar{V}_{1}^{c}\} Z_{1} = \{V_{1} \cap \bar{U}_{1}^{c}\} W_{2} = \{U_{2} \cap (\bar{V}_{1}^{c} \cap \bar{V}_{2}^{c})\} Z_{2} = \{V_{2} \cap (\bar{U}_{1}^{c} \cap \bar{U}_{2}^{c})\} ... W_{k} = \{U_{k} \cap (\bigcap_{i=1}^{k} \bar{V}_{i}^{c})\} Z_{k} = \{V_{k} \cap (\bigcap_{i=1}^{k} \bar{U}_{i}^{c})\}$$

Let $W = \bigcup_{i=1}^{\infty} W_i$ and $Z = \bigcup_{j=1}^{\infty} Z_j$. I claim that W and Z are open sets containing A and B such that W and Z are disjoint.

First note that all W_i and Z_j are open since they are finite intersections of open sets. So W and Z are open since they are unions of open sets. Next see that $U_i \cap A \subset W_i$ thus since U_i covers A, W_i cover A. So $A \subset W$ and similarly $B \subset Z$. Lastly I will show that $W_n \cap Z_m = \emptyset$ for some m, n. See that $W_n = U_n - (\bigcup_{i=1}^n \overline{V_i})$ so if $W_n \cap Z_m$ is nonempty then m > n. Similarly $Z_m = V_m - (\bigcup_{i=1}^m \overline{U_i})$ so if $W_n \cap Z_m$ is nonempty then n > m. Thus $W_n \cap Z_m = \emptyset$. So $W \cap Z = \emptyset$.

Thus W and Z are disjoint open sets which contain A and B. Therefore X is normal.