THE COMPACTNESS THEOREM IN PROPOSITIONAL LOGIC

DAVID SIDI

The Compactness Theorem for Satisfiability considered here comes from Propositional Logic; it can be proved in a topological setting. The theorem states an equivalence, but one direction is trivial, so the other direction is given here and proved. A few definitions are needed to state the half-theorem.¹

Definition. The set of *propositional variables* $\{A_1, A_2, ...\}$ is a countable set.

Definition. A *truth assignment* is a function from the set of variables to $\{0, 1\}$.

Definition. A *formula* is a combination of propositional variables and the connectives $\{\land, \neg\}$ according to familiar formation rules (which are left unstated).

Definition. A formula is *satisfiable* if there is a truth assignment to its variables on which it is true (combining the truth of the variables in the familiar way for the usual semantics for 'and' (\wedge) and 'not' (\neg)). A set of formulas is satisfiable if each of its formulas is satisfiable.

Theorem. Let $\mathcal{A} = \{A_1, A_2, ...\}$ be a set of variables; let $\Phi = \{\phi_1, \phi_2, ...\}$ be a set of formulas over \mathcal{A} . Then Φ is satisfiable if for all finite $\Phi_i \subset \Phi$, Φ_i is satisfiable.

Proof. Let $F_{\phi} \subset \langle \{0,1\} \rangle^{\omega}$ be the set of assignments satisfying a formula ϕ .² Since ϕ has at most finitely many variables appearing in it, and only those variables determine ϕ 's truth value, F_{ϕ} has finitely many factors not equal to $\{0,1\}$. By Theorem 19.1, then, F_{ϕ} is a basis element in the product topology, and is therefore open. Its complement is also open, however, so F_{ϕ} is closed in the product topology. An example of this setup is given in figure 0.1.

In the discrete topology $\{0,1\}$ is compact; by Tychonoff's theorem, $\langle \{0,1\}\rangle^{\omega}$ in the product topology is also compact. So by theorem 26.9,³ it suffices to show that the collection of closed sets $F_{\Phi} = \{F_{\phi} \mid \phi \in \Phi\}$ has the finite intersection property. This is immediate from the hypothesis: The intersection $\bigcap_{\phi \in \Phi_i} F_{\phi}$ of a finite subcollection Φ_i of formulas contains exactly the assignments satisfying all formulas of Φ_i , so since by hypothesis Φ_i is satisfiable, $\bigcap_{\phi \in \Phi_i} F_{\phi}$ is nonempty, as desired. \Box

¹Note tuples are represented with angle brackets, as in $\langle a, b \rangle$.

²There is a one-to-one correspondence between truth assignments and omega tuples $\langle \{0,1\} \rangle^{\omega}$: for A the set of all truth assignments over \mathcal{A} , define $f : A \to \{0,1\}^{\omega}$ by $f(g) = \langle g(A_1), g(A_2), \ldots \rangle$.

³**Theorem 26.9.** Let X be a topological space. Then X is compact iff for every collection C of closed sets in X having the finite intersection property, the intersection $\bigcap_{C \in C} C$ of all elements of C is nonempty.

A_1	A_2	$A_1 \lor A_2$	$\neg A_2$
Т	Т	Т	F
F	Т	Т	F
Т	F	Т	Т
F	F	F	Т

FIGURE 0.1. In the truth table, $\Phi = \{A_1 \lor A_2, \neg A_2\}$. Each row of the table gives part of a truth assignment, over the propositional variables appearing in Φ . Only truth assignments matching row three in their first two assignments are in F_{Φ} , after these two all possible values for the remaining tuple entries are included. Thus, for example $\langle 1, 0, 0, 0, \ldots \rangle$, $\langle 1, 0, 1, 0, 0, \ldots \rangle$, $\langle 1, 0, 1, 1, 0, 0, \ldots \rangle$ are all included in F_{Φ} ; more generally $F_{\Phi} = \{1\} \times \{0\} \times \{0, 1\} \times \{0, 1\} \times$ \cdots . F_{Φ} is open and closed in $\langle \{0, 1\} \rangle^{\omega}$, since $\{1\} \times \{0\} \times \{0, 1\} \times \cdots$.

$\operatorname{References}$

- [1] EBBINGHAUS, H.-D. Mathematical logic. Springer, 1994.
- TAO, T. The completeness and compactness theorems of first-order logic, Apr. 2009. https://terrytao.wordpress.com/2009/04/10/the-completeness-andcompactness-theorems-of-first-order-logic/.