For each problem below, please submit well-written, complete sentence solutions. Prepare Questions 1-3 for Quiz on Friday 4/22

- 1. Given spaces X and Y, let [X, Y] denote the set of homotopy classes of maps of X into Y.
 - (a) Let I = [0, 1]. Show that for any X, the set [X, I] has a single element.
 - (b) Show that if Y is path connected then the set[I, Y] has a single element.
- 2. A space X is said to be contractible if the identity map $i_X : X \to X$ is nulhomotopic.
 - (a) Show the I and \mathbb{R} are contractible.
 - (b) Show that a contractible space is path connected.
 - (c) Show that if Y is contractible, then for any X. the set [X, Y] has a single element.
 - (d) Show that if X is contractible and Y is path connected, then [X, Y] has a single element.
- 3. A subset A of \mathbb{R}^n is said to be star convex is for some point a_0 of A, all the line segments joining a_0 to other points in A lie in A.
 - (a) Find a star convex set that is not convex.
 - (b) Show that is A is star convex, A is simply connected.
- 4. Prove using the techniques of algebraic topology the fundamental theorem of algebra, i.e. Show that every nonconstant polynomial with coefficients in \mathbb{C} has a root in \mathbb{C} . (Hint: you may refer to the proof in Hatcher, explain the details in your own words.)
- 5. Show that composition of paths satisfies the following cancellation property: If $f_0 \cdot g_0 \simeq f_1 \cdot g_1$ and $g_0 \simeq g_1$ then $f_0 \simeq f_1$.
- 6. Read through the associativity part of Thm 51.2 and summarize it.
- 7. (Grad) Show that every continuous map $h: D^2 \to D^2$ has a fixed point, that is, a point x with h(x) = x.