
Section 4.7: The Euclidean Algorithm∗

We mentioned when we talked about the gcd of m and n, that there was an algorithm that helps find
the gcd. This algorithm will also help find s and t such that gcd(m,n) = sm + tn. And help us solve the
expression

x · n ≡ a(mod m).

Why would we want to solve such an equation?

• applications to public-key cryptosystems for secure transmission of data

• fast implementation if computer arithmetic for very large numbers

So what is this algorithm?

Proposition. If m and nare integers with n > 0, then the common divisors m and n are the same as the
common divisors of n and m mod n).

Let’s try a few examples.
Find the common divisors of 90 and 6.

What does this theorem say that about this example?

Proof.
We just need to show that if d is a divisor m and n. Then d is a divisor of m mod n. And then on the

reverse side, if d’ is a divisor of n and m mod n then d’ is a divisor of m mod n.
To start, let’s assume d is a divisor of m and n. We know

m = +m mod n

so
m mod n =

And therefore:

∗For Math 243, Katie Walsh

1



Now, assume d’ is a divisor of n and m mod n and show d’ is a divisor of m mod n.

This leads us to the an algorithm for finding the gcd.
AlgorithmGCD(integer, integer)
{Input m,n ∈ N not both 0}
{Output: gcd(m,n)}
{Auxiliary Variables: integers a and b}
a := m; b := n
{The pairs (a, b) and (m,n) have the same gcd.}
while b 6= 0 do
: (a, b) := b, a mod b)
return a
Run through this algorithm to find gcd(20, 63).

Run through this algorithm to find gcd(45, 12).

Theorem. For input integers m > n ≥ 0, AlgorithmGCD makes at most 2log2(m + n) passes through the
loop.

2



Now, we can also extend the Euclidean Algorithm, to run in the same number of passes through the loop
as before, but to remember a bit more information so that we can find s and t such that gcd(m,n) = sm+tn.
Here’s an example of how that works:

3



Use the algorithm to find sand t such that gcd(m,n) = sm+ tn for the pairs below. You may need extra
paper.

m = 20, n = 63
m = 120, n = 162
m = 17, n = 123

4



And now, we can solve problems of the form

n · x ≡ a(modm)

The trick is if we can find t such that

n · t ≡ 1(modm)

Then we can just multiply both sides by a. So now we just need to find t. Reorganizing this (using the
definition of mod) we get (for some s)

n · t = 1 + s ·m
Or that

1 = n · t− s ·m
This is exactly (up to sign) what we found from the Euclidean algorithm. Look at the example below:

5



Note that this only works when the gcd(m,n) = 1. If the gcd is not 1, then

n · x ≡ a(modm)

only has a solution when a is a multiple of the gcd so we can adapt the algorithm to find it. Try a few
examples of this.

Solve the following:
10x ≡ 3(mod 37)
120x ≡ 12(mod 162)
20x ≡ 5(mod 63)

6


