Section 4.7: The Euclidean Algorithm*

We mentioned when we talked about the gcd of m and n, that there was an algorithm that helps find
the ged. This algorithm will also help find s and ¢ such that ged(m,n) = sm + tn. And help us solve the
expression

x-n = a(modm).

Why would we want to solve such an equation?
e applications to public-key cryptosystems for secure transmission of data
e fast implementation if computer arithmetic for very large numbers

So what is this algorithm?

Proposition. If m and nare integers with n > 0, then the common divisors m and n are the same as the
common divisors of n and m mod n).

Let’s try a few examples.
Find the common divisors of 90 and 6.

What does this theorem say that about this example?

Proof.

We just need to show that if d is a divisor m and n. Then d is a divisor of m mod n. And then on the
reverse side, if d’ is a divisor of n and m mod n then d’ is a divisor of m mod n.

To start, let’s assume d is a divisor of m and n. We know

m = +m modn

SO
m mod n =

And therefore:
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Now, assume d’ is a divisor of n and m mod n and show d’ is a divisor of m mod n.

This leads us to the an algorithm for finding the ged.
AlgorithmGCD (integer, integer)
{Input m,n € N not both 0}
{Output: ged(m,n)}
{Auxiliary Variables: integers a and b}
a:=m;b:=n
{The pairs (a,b) and (m,n) have the same ged.}
while b # 0 do
(a,b) :=b,a mod b)
return a
Run through this algorithm to find ged(20, 63).

Run through this algorithm to find ged (45, 12).

Theorem. For input integers m > n > 0, AlgorithmGCD makes at most 2logs(m + n) passes through the
loop.



Now, we can also extend the Euclidean Algorithm, to run in the same number of passes through the loop

as before, but to remember a bit more information so that we can find s and ¢ such that ged(m, n) = sm+tn.
Here’s an example of how that works:
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Use the algorithm to find sand ¢ such that ged(m,n) = sm+tn for the pairs below. You may need extra
paper.

m = 20,n = 63

m = 120,n = 162

m = 17,n =123



And now, we can solve problems of the form

n-x = a(modm)
The trick is if we can find ¢ such that
n-t = 1(modm)

Then we can just multiply both sides by a. So now we just need to find ¢. Reorganizing this (using the
definition of mod) we get (for some s)

n-t=14+s-m
Or that

l=n-t—s-m

This is exactly (up to sign) what we found from the Euclidean algorithm. Look at the example below:
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Note that this only works when the ged(m,n) = 1. If the ged is not 1, then

n-x = a(modm)

only has a solution when a is a multiple of the ged so we can adapt the algorithm to find it. Try a few
examples of this.

Solve the following;:

10z = 3(mod 37)

120z = 12(mod 162)

20z = 5(mod 63)



