Dataflow Examples, and Correctness and Termination (2/N)

Claire Le Goues

15-8190: Program Analysis

EXAMPLE ANALYSES

Reaching Definitions Analysis

 Goal: determine which is the most recent assignment to a variable that precedes its use:

```
[y := x]<sub>1</sub>;
[z := 1]<sub>2</sub>;
while [y>1]<sub>3</sub> do
  [z := z * y]<sub>4</sub>;
  [y := y - 1]<sub>5</sub>;
[y := 0]<sub>6</sub>;
```

- Example: definitions 1 and 5 reach the use of y at 4
- Simpler version of constant propagation, zero analysis, etc.
 - Just look at the reaching definitions for constants!
 - If definitions reaching use include "undefined" sentinal, then we may be using an undefined variable

Reaching Definitions

- Set Lattice (\mathbb{P}^{DEFS} , \sqsubseteq_{RD} , \sqcup_{RD} , \varnothing , **DEFS**)
 - DEFS: the set of definitions in the program
 - Each element of the lattice is a subset of defs
 - PDEFS is the powerset of DEFS
- Approximation: A definition d may reach program point P if d is in the lattice at P
 - We call this a may analysis
 - $-x \sqsubseteq_{\mathsf{RD}} y \text{ iff } x \subseteq y$
 - $x \sqcup_{\mathsf{RD}} y = x \cup y$
 - This is a direct consequence of the definition of ⊑_{RD}
 - $\perp = \emptyset$ (no reaching definitions)
 - \top =**DEFS** (all definitions reach)

Reaching Definitions

- Initial assumptions?
 - Either dummy assignments, or empty set.
 - Represents passed values for parameters
 - Represents uninitialized for non-parameters
- Common notation in set-based analyses:
 - Kill set: elements removed from a set by an instruction.
 - Gen set: elements added to a set by an instruction.

Flow functions

$$f_{RD}\llbracket I \rrbracket (\sigma) \qquad \qquad = \sigma - KILL_{RD}\llbracket I \rrbracket \cup GEN_{RD}\llbracket I \rrbracket$$

$$KILL_{RD}\llbracket n: x:= \ldots \rrbracket \qquad = \{x_m | x_m \in \mathsf{DEFS}(x)\}$$

$$KILL_{RD}\llbracket I \rrbracket \qquad \qquad = \varnothing \qquad \text{if I is not an assignment}$$

$$GEN_{RD}\llbracket n: x:= \ldots \rrbracket \qquad = \{x_n\}$$

$$GEN_{RD}\llbracket I \rrbracket \qquad \qquad = \varnothing \qquad \text{if I is not an assignment}$$

Reaching Definitions Example

$$[y:=x]_1; \qquad \text{Position} \qquad \text{Worklist} \qquad \text{Lattice Element} \\ [z:=1]_2; \\ \text{while } [y>1]_3 \text{ do} \\ [z:=z*y]_4; \\ [y:=y-1]_5; \\ [y:=0]_6; \\ \end{cases}$$

Reaching Definitions Example

$[y := x]_1;$
$[z := 1]_2;$
while [y>1] ₃ do
$[z := z * y]_4;$
$[y := y - 1]_5;$
$[y := 0]_6;$

Position	Worklist	Lattice Element
0	1	$\{x_0, y_0, z_0\}$
1	2	$\{x_0, y_1, z_0\}$
2	3	$\{x_0, y_1, z_2\}$
3	4,6	$\{x_0, y_1, z_2\}$
4	5,6	$\{x_0, y_1, z_4\}$
5	3,6	$\{x_0, y_5, z_4\}$
3	4,6	$\{x_0, y_1, y_5, z_2, z_4\}$
4	5,6	$\{x_0, y_1, y_5, z_4\}$
5	6	$\{x_0, y_5, z_4\}$
6		$\{x_0, y_6, z_2, z_4\}$

Live Variables Analysis

 Goal: determine which variables may be used again before they are redefined (i.e. are live) at the current program point.

```
[y := x]<sub>1</sub>;
[z := 1]<sub>2</sub>;
while [y>1]<sub>3</sub> do
  [z := z * y]<sub>4</sub>;
  [y := y - 1]<sub>5</sub>;
[y := 0]<sub>6</sub>
```

- Example: after statement 1, y is live, but x and z are not
- Optimization applications: If a variable is not live after it is defined, can remove the definition statement (e.g. 6 in the example)

Live Variables Definition

- Set Lattice (P^{Vars}, ⊑_{LV}, Ŭ_{LV}, Ø, Vars)
 - Vars is the set of variables in the program
 - Each element of the lattice is a subset of Vars
 - P^{Vars} is the powerset of **Vars**, i.e. the set of all subsets of **Vars**
 - $-x \sqsubseteq_{\mathsf{LV}} y \text{ iff } x \subseteq y$
 - $x \sqcup_{\mathsf{LV}} y = x \cup y$
 - Most precise element $\perp = \emptyset$ (no live variables)
 - Least precise element ⊤ =DEFS (all variables live)

Live Variables Definition

- Live Variables is a backwards analysis
 - To figure out if a variable is live, you have to look at the future execution of the program
- Will x be used before it is redefined?
 - When x is defined, assume it is not live
 - When x is used, assume it is live
 - Propagate lattice elements as usual, except backwards
- Initially assume return value is live
 - $-i_{1}$ = { x } where x is the variable returned from the function

Flow Function Practice

Write flow functions for Live Variable analysis:

$$-\mathbf{f}_{LV}(\sigma, [x := e]_k) =$$

$$-\mathbf{f}_{LV}(\sigma, [e]_{k}) =$$

$$-\mathbf{f}_{LV}(\sigma, /* any other */) =$$

Flow Function Practice

Write flow functions for Live Variable analysis:

$$-\mathbf{f}_{LV}(\sigma, [x := e]_k) = (\sigma - \{x\}) \cup vars(e)$$

- Kills (removes from set) the variable x
- Generates (adds to set) the variables in e
- Note: must kill first then generate (what if e = x?)

$$-\mathbf{f}_{LV}(\sigma, [e]_k) = \sigma \cup vars(e)$$

$$-\mathbf{f}_{LV}(\sigma, /* any other */) = \sigma$$

Live variables practice

Position	Worklist	Lattice Value

Live Variables Example

Position	Worklist	Lattice Element
exit	6	{z}
6	3	{z}
3	5,2	{y,z}
5	4,2	{y,z}
4	3,2	{y,z}
3	2	{y,z}
2	1	{y}
1		{x}

Example: interrupt checker

An interrupt checker

Abstraction

- Three abstract states: enabled, disabled, maybe-enabled
- Warning if we can reach the end of the function with interrupts disabled.

Transfer function:

- If a basic block includes a call to cli(), then it moves the state of the analysis from disabled to enabled.
- If a basic block includes a call to restore_flags(), then it moves the state of the analysis from enabled to disabled.


```
(entry)
                                                                   \sigma \rightarrow \text{enabled}
                                                  unsigned long flags;
1.
      int foo() {
                                                  int rv;
2.
          unsigned long flags;
                                                  save flags(flags);
3.
          int rv;
                                                                   \sigma \rightarrow \text{enabled}
4.
          save flags(flags);
                                                           cli();
5.
          cli();
6.
          rv = dont interrupt();
                                                                   \sigma \rightarrow disabled
7.
          if (rv > 0) {
                                                 rv = dont interrupt();
8.
               // do stuff
                restore_flags();
9.
                                                                   \sigma \rightarrow disabled
10.
          } else {
                                                        if (rv > 0)
           handle_error_case();
11.
12.
                                     \sigma \rightarrow \text{disabled}
                                                                                     \sigma \rightarrow \text{disabled}
13.
          return rv;
                                       // do stuff
14. }
                                                                   handle_error_case();
                                       restore flags();
                                              \sigma \rightarrow \text{enabled}
                                                                     σ → disabled
                                                         return rv;
                                                                   σ: Maybe enabled: problem!
                                         (c) 2016 Claire Le Goues
                                                                         18
                                                              (exit)
```

Abstraction

```
(entry)
1. void foo() {
2.
                                         3. cli();
3.
  cli();
  if (a) {
                                      4. if (rv > 0)
5.
         restore flags();
6.
7. }
                        5. restore_flags();
                                           (exit)
```

TERMINATION

Termination definitions

- Ascending chain: A sequence σ_k is an ascending chain iff $n \le m$ implies $\sigma_n \sqsubseteq \sigma_m$.
- **Height of an ascending chain**: An ascending chain σ_k has finite height h if it contains h+1 distinct elements.
- Height of a lattice: A lattice (L, □) has finite height h
 if there is an ascending chain in the lattice of height
 h, and no ascending chain in the lattice has height
 greater than h.
- Monotonicity: Function f is monotonic iff $\sigma_1 \sqsubseteq \sigma_2$ implies $f(\sigma_1) \sqsubseteq f(\sigma_2)$

Theorem: Dataflow Analysis Termination

IF THE DATAFLOW LATTICE (*L*, □) HAS FINITE HEIGHT, AND THE FLOW FUNCTIONS ARE MONOTONIC, THE WORKLIST ALGORITHM WILL TERMINATE.

Why? Proof by induction

- Assume: The input state at every program point (other than entry) starts at \bot
- Base case: The first time the flow function is run on each instruction, the result will be at least as high in the lattice as before (because nothing is lower than \bot).
- Assume that the previous time we ran the flow function, we had input information σ_i and output information σ_o .
- If we are running it again, it's because the input information has changed to some new σ_i '. By the induction hypothesis, we can assume $\sigma_i \sqsubseteq \sigma_i$ '.
- We thus just need to prove is that $\sigma_o \sqsubseteq \sigma_o'$, which will be true if our flow functions are monotonic (by definition).

Why? Proof by induction

- (Start of) Induction step:
 - Assume that the previous time we ran the flow function, we had input information σ_i and output information σ_o .
 - If we are running it again, it's because the input information has changed to some new σ_i . By the induction hypothesis, we can assume $\sigma_i \sqsubseteq \sigma_i$.
- So, for termination, we just need to prove $\sigma_o \sqsubseteq \sigma_o'$, which will be true if our flow functions are monotonic (by definition).

...Wait, why?

- Monotonicity means that the dataflow value at each program point i can only i can each time $\sigma[i]$ is assigned.
 - So, the assignment can happen a maximum of h (lattice height) times for each program point.
- This bounds the number of elements added to the worklist to h * e (e=control flow graph edges).
- Since we remove one element of the worklist each time the loop executes, the loop will execute no more than h * e times.
- Thus, the algorithm will always terminate.

Termination definitions

- Ascending chain: A sequence σ_k is an ascending chain iff $n \le m$ implies $\sigma_n \sqsubseteq \sigma_m$.
- Height of an ascending chain: An ascending chain σ_k has finite height h if it contains h+1 distinct elements.
- Height of a lattice: A lattice (L, \sqsubseteq) has finite height h if there is an ascending chain in the lattice of height h, and no ascending chain in the lattice has height greater than h.
- Monotonicity: Function f is monotonic iff $\sigma_1 \sqsubseteq \sigma_2$ implies $f(\sigma_1) \sqsubseteq f(\sigma_2)$

Zero analysis monotoncitiy

- Case $f_Z[\![x := 0]\!](\sigma) = [x \mapsto Z]\sigma$
 - Assume $\sigma_1 \sqsubseteq \sigma_2$
 - According to \sqsubseteq 's pointwise definition [x \mapsto Z] $\sigma_1 \sqsubseteq$ [x \mapsto Z] σ_2
- Case $f_Z[x := y](\sigma) = [x \mapsto \sigma(y)]\sigma$
 - -Assume $\sigma_1 \sqsubseteq \sigma_2$
 - $-\sqsubseteq$ pointwise definition means that $\sigma_1(y)\sqsubseteq$ $\sup_{simple}\sigma_2(y)$
 - Therefore, using the pointwise definition of \sqsubseteq again, $[x \mapsto \sigma_1(y)]\sigma_1 \sqsubseteq [x \mapsto \sigma_2(y)]\sigma_2$

Moar monotonicity!

LET'S DO ANOTHER RULE TOGETHER

Tricksiness

- This only works if the lattice is of finite height...
- ...hmmmm....
 - (spoiler alert!)

Correctness: Intuition

PROGRAM ANALYSIS RESULTS SHOULD CORRECTLY DESCRIBE EVERY ACTUAL CORRESPONDING PROGRAM EXECUTION.

Correctness definitions

- **Program Trace** T of a program P is a potentially infinite sequence $\{c_0, c_1, ...\}$ of configurations, where $c_0 = E_0$, 1 is the initial configuration, and for every $i \ge 0$, $P \vdash c_i \leadsto c_{i+1}$
- The result { σ_i | i \in P } of a **dataflow analysis** on program **P** is sound iff, for all traces T of P, \forall i s.t. $0 \le i < length(T)$, $\alpha(c_i) \sqsubseteq \sigma_{n_i}$
- A dataflow analysis result { σ_i | i \in P } is **a fixed point** iff $\sigma_o \sqsubseteq \sigma_1$ where σ_o is the initial analysis information and σ_1 is the dataflow result before the first instruction, and for each instruction i we have $\sigma_i = \bigsqcup_{j \in \text{preds}(i)} f[P[j]](\sigma_j)$

Exercise

 Consider the following (incorrect) flow function for zero analysis:

$$f_Z[\![x := y + z]\!](\sigma) = [x \mapsto Z]\sigma$$

- Why? Prove it.
- Let's do another example together, for practice.

Local soundness

- A flow function f is locally sound iff:
 - $-P \vdash c_i \leadsto c_{i+1}$
 - -and $\alpha(\mathsf{c_i}) \sqsubseteq \sigma_i$ and $f[\![P[n_i]]\!](\sigma_i) = \sigma_{i+1}$ imply $\alpha(\mathsf{c_{i+1}}) \sqsubseteq \sigma_{i+1}$

$$f_Z[\![x := y + z]\!](\sigma) = [x \mapsto Z]\sigma$$

Why? Prove it!

SO THIS DOESN'T WORK FOR OUR FALSE FLOW FUNCTION...

Zero analysis: assign to zero

Case
$$f_Z[x := 0](\sigma) = [x \mapsto Z]\sigma$$

- Assume $c_i = E_i$, and $\alpha(E) = \sigma_i$
- Thus $\sigma_{i+1} = f_Z[[x := 0]](\sigma_i) = [x \mapsto Z]\alpha(E)$
- step-const says $c_{i+1} = [x \mapsto 0]E, n+1$
- the definition of α says $\alpha([x \mapsto 0]E) = [x \mapsto Z]\alpha(E)$
- Therefore $\alpha(c_{i+1}) \sqsubseteq \sigma_{i+1}$

Zero analysis: assign to not zero

Case
$$f_Z[x := m](\sigma_i) = [x \mapsto N]\sigma_i$$
 where $m \neq 0$

- Assume c_i = E,n and $\alpha(E)$ = σ_i
- Thus $\sigma_{i+1} = f_Z[x := m](\sigma_i) = [x \mapsto N]\alpha(E)$
- step-const says $c_{i+1} = [x \mapsto m]E, n+1$
- Now $\alpha([x \mapsto m]E) = [x \mapsto N]\alpha(E)$ by the definition of α and the assumption that m \neq 0.
- Therefore, $\alpha(c_{i+1}) \sqsubseteq \sigma_{i+1}$

Zero analysis: operators

Case
$$f_Z[x := y \text{ op } z](\sigma_i) = [x \mapsto ?]\sigma_i$$

- Assume c_i = E,n and α (E) = σ_i
- Thus $\sigma_{i+1} = f_Z[x := y \text{ op } z](\sigma_i) = [x \mapsto ?]\alpha(E)$
- step-const says that, for some k,

$$c_{i+1} = [x \mapsto k]E, n+1$$

- Now $\alpha([x \mapsto k]E) \sqsubseteq [x \mapsto ?]\alpha(E)$ because the map is equal for all keys except x, and for x we have $\alpha_{simple}(k) \sqsubseteq_{simple} ?$ for all k
- Therefore, $\alpha(c_{i+1}) \sqsubseteq \sigma_{i+1}$

Zero analysis: assign to variable

Case
$$f_Z[x := y](\sigma) = [x \mapsto \sigma(y)]\sigma$$
:

ALMOST THERE!

Correctness definitions

- **Program Trace** T of a program P is a potentially infinite sequence $\{c_0, c_1, ...\}$ of configurations, where $c_0 = E_0$, 1 is the initial configuration, and for every $i \ge 0$, $P \vdash c_i \leadsto c_{i+1}$
- The result { σ_i | i \in P } of a **dataflow analysis** on program **P** is sound iff, for all traces T of P, \forall i s.t. $0 \le i < length(T)$, $\alpha(c_i) \sqsubseteq \sigma_{n_i}$
- A dataflow analysis result { σ_i | i \in P } is **a fixed point** iff $\sigma_o \sqsubseteq \sigma_1$ where σ_o is the initial analysis information and σ_1 is the dataflow result before the first instruction, and for each instruction i we have $\sigma_i = \bigsqcup_{j \in \text{preds}(i)} f[P[j]](\sigma_j)$

Local Soundness implies Global Soundness: If a dataflow analysis's flow function f is monotonic and locally sound, and for all traces T we have $\alpha(c_0) \sqsubseteq \sigma_0$ where σ_0 is the initial analysis information, then any fixed point $\{ \sigma_i \mid i \in P \}$ of the analysis is also sound.

Proof: induction on trace T

Case c_0 :

- $\alpha(c_0) \sqsubseteq \sigma_0$ by assumption.
- $\sigma_o \sqsubseteq \sigma_{n_0}$ by the definition of a fixed point.
- $\alpha(c_0) \sqsubseteq \sigma_{n_0}$ by the transitivity of \sqsubseteq

Proof: induction on trace T

Case c_{i+1}:

- The induction hypothesis says: $\alpha(c_i) \sqsubseteq \sigma_{n_i}$
- The definition of a trace says: $P \vdash c_i \leadsto c_{i+1}$
- Local soundness says: $\alpha(c_{i+1}) \sqsubseteq f[\![P[n_i]]\!](\alpha(c_i))$
- Because f is monotone: $f[P[n_i]](\alpha(c_i)) \sqsubseteq f[P[n_i]](\sigma_{n_i})$
- The definition of a fixed point says:

$$\sigma_{n_{i+1}} = f[\![P[n_i]]\!](\sigma_{n_i}) \sqcup \dots$$

- The properties of join mean that: $f[P[n_i]](\sigma_{n_i}) \sqsubseteq \sigma_{n_{i+1}}$
- And because \sqsubseteq is transitive, $\alpha(c_{i+1}) \sqsubseteq \sigma_{n_{i+1}}$

Conclusion

- So since:
 - The abstraction lattice maps to reality.
 - The lattice has finite height.
 - The flow functions are monotonic and locally sound.
- ...Zero analysis is also sound/correct, meaning its results on any program P overapproximate (but never misrepresent) reality.

Q. E. D.

