Dataflow Examples, and
Correctness and Termination (2/N)

Claire Le Goues
15-8190: Program Analysis

®
institute for
(c) 2016 Claire Le Goues 1 I S SOFTWARE
RESEARCH

EXAMPLE ANALYSES

®
institute for
(c) 2016 Claire Le Goues 2 I S SOFTWARE
RESEARCH

Reaching Definitions Analysis

* Goal: determine which is the most recent assignment to a
variable that precedes its use:

[y :=
[z :=

[z

[y :

[y :=

X117

11,3
while [y>1],; do

= Z * Yl

=y — 1]s;

01g;

 Example: definitions 1 and 5 reach the use of y at 4

* Simpler version of constant propagation, zero analysis, etc.

* Just look at the reaching definitions for constants!

* |If definitions reaching use include “undefined” sentinal, then we may
be using an undefined variable

institute for
(c) 2016 Claire Le Goues 3 I S SOFTWARE
RESEARCH

Reaching Definitions

* Set Lattice (PPEFS, Cp, Ugp, I, DEFS) DEFS={1,2,4}

— DEFS: the set of definitions in the program / ‘ \

— Each element of the lattice is a subset of {1,2} {1,4} {2,4}

defs
— [PPEFSjs the powerset of DEFS ‘ >< >< ‘
. - {1} {2} {4}
* Approximation: A definition d may
reach program point P if d is in the \ ‘ /
lattice at P %

— We call this a may analysis
— xXUgpy=xUy

» This is a direct consequence of the
definition of Egp

— 1 = (no reaching definitions)
— T =DEFS (all definitions reach)

institute for
(c) 2016 Claire Le Goues 4 I S SOFTWARE
RESEARCH

Reaching Definitions

* |nitial assumptions?
— Either dummy assignments, or empty set.
— Represents passed values for parameters
— Represents uninitialized for non-parameters

e Common notation in set-based analyses:
— Kill set: elements removed from a set by an instruction.
— Gen set: elements added to a set by an instruction.

institute for
(c) 2016 Claire Le Goues 5 I S SOFTWARE
RESEARCH

Flow functions

frp[I](o) =0 — KILLgp[I] u GENgp[I]

KILLgp[n:z:=..] = {xm|zm € DEFS(2)}
KILLgrp[/] = if I is not an assignment

GENgpln:x:=..] ={z,}
GENgp|!] = if I is not an assignment

o .
institute ror

SOFTWARE
RESEARCH

Reaching Definitions Example

[y :=X]4; Position Worklist Lattice Element
[z :=1],;
while [y>1]; do
[z:=2*yl,
ly =y —1]s;
[y := Ole;

®
institute for
(c) 2016 Claire Le Goues 7 I S SOFTWARE
RESEARCH

Reaching Definitions Example

[y = X]1; Position Worklist Lattice Element
A 1 . 0 1 {Xo; Yo Zo}
[Z -]21 1 2 {Xo; Y1 Zo}
: 2 3 {Xor Y1, 2,}
while [y>1]. do o 12
[y]3 3 416 {XOI ylr 22}
[Z := Z * y]4; 4 516 {XOI y]_l 24}
o . 5 316 {XOI y51 24}
[y - y _ 1]5’ 3 416 {XOI ylr y51 221 24}
§ — . 4 516 {XOI ylr y51 24}
[y . 0]6’ 5 6 {X(); Ys, 24}
6 {XOI y61 221 z4}

institute for
(c) 2016 Claire Le Goues 8 I S SOFTWARE
RESEARCH

Live Variables Analysis

* Goal: determine which variables may be used again
before they are redefined (i.e. are live) at the current
program point.

[y = X].7

[z := 1],;

while [y>1],; do
[Z2 := 2 * ¥4
[y :=y — 1157

[y == 0]6

 Example: after statement 1, y is live, but x and z are not

* Optimization applications: If a variable is not live after it is
defined, can remove the definition statement (e.g. 6 in
the example)

institute for
(c) 2016 Claire Le Goues 9 I S SOFTWARE
RESEARCH

Live Variables Definition
Vars={x,y,z}

////

Xyr Xzp vz}

{x} {y} {z}
« Set Lattice (PVers, &, Uy, I, Vars)

— Vars is the set of variables in the program
— Each element of the lattice is a subset of Vars
« PVarsis the powerset of Vars, i.e. the set of all subsets of Vars
- xEyyiffxCy
— XUyy=xUy
— Most precise element 1L =& (no live variables)
— Least precise element T =DEFS (all variables live)

institute for
(c) 2016 Claire Le Goues 10 I S SOFTWARE
RESEARCH

Live Variables Definition

* Live Variables is a backwards analysis

— To figure out if a variable is live, you have to look at the
future execution of the program

e Will x be used before it is redefined?

— When x is defined, assume it is not live
— When x is used, assume it is live
— Propagate lattice elements as usual, except backwards

* |nitially assume return value is live
— iy, = { x } where x is the variable returned from the function

institute for
(c) 2016 Claire Le Goues 11 I S SOFTWARE
RESEARCH

Flow Function Practice
 Write flow functions for Live Variable

analysis:
—fiy(o, [x = ey) =

—f (o, [e]y) =

®
institute for
(c) 2016 Claire Le Goues 12 I S r SOFTWARE
RESEARCH

Flow Function Practice

* Write flow functions for Live Variable
analysis:
— (o, [x = e]) = (o-{x}) Uvars(e)
* Kills (removes from set) the variable x

» Generates (adds to set) the variables in e

* Note: must kill first then generate (what if e =
x?)

—f (o, [e]y) = oUvars(e)

—f(o, /*any other /) = o

®
institute for
(c) 2016 Claire Le Goues 13 I S SOFTWARE
RESEARCH

Live variables practice

ly = X];

[z :=1],;

while [y>1]; do
[z =27 Y],;
ly =y -1l

[y := Ole;

return z;

Position | Worklist

Lattice Value

(c) 2016 Claire Le Goues

y

institute for
SOFTWARE
RESEARCH

Live Variables Example

[y :==x];; Position
[z :=1],; 6
while [y>1];do
[z:=2" Yl :
ly =y -1l 2
[y := Ole; :
return z;

Worklist
6

3

5,2

4,2

3,2

2

1

(c) 2016 Claire Le Goues

Lattice Element
{z}

{z}

{y,z}

{y,z}

{y,z}

{y,z}

{y}

{x}

©
institute for
15 I S SOFTWARE
RESEARCH

Example: interrupt checker

maybe-enabled

N

enabled disabled

\/

(bottom)

®
institute for
(c) 2016 Claire Le Goues 16 I S SOFTWARE
RESEARCH

An interrupt checker

* Abstraction
— Three abstract states: enabled, disabled, maybe-enabled

— Warning if we can reach the end of the function with
interrupts disabled.

* Transfer function:
— If a basic block includes a calltocli (), then it moves
the state of the analysis from disabled to enabled.

— If a basic block includes a call to restore flags(),
then it moves the state of the analysis from enabled to

disabled.

institute for
(c) 2016 Claire Le Goues 17 I S SOFTWARE
RESEARCH

0O J o Ul & W K
°

O
°

10.
11.
12.
13.
14.

int foo() {

}

unsigned long flags;

int rv;

save flags(flags);

cli();

rv = dont interrupt();

if (rv > 0) {
// do stuff

(entry)

l o = enabled
unsigned long flags;
int rv;
save flags(flags);

l o = enabled

cli();

l o — disabled

rv = dont interrupt();

restore flags(); ‘lo-édBaUed
} else {
handle error case(); if (rv > 0)

}

return rv;

> disabled/\ o = disabled

// do_stuff
restore flags();

handle error case();

oew

return rv;

l o: Maybe engbled:

(c) 2016 Claire Le Goues (EXIt) 18

problem!
institute for
SOFTWARE
RESEARCH

Abstraction

(entry)
1. void foo() {
2. e
3. cli();
4. if (a) {
5. restore flags(); 4. if (rv > 0)
6. }
7. }

(exit)

institute for
(c) 2016 Claire Le Goues 19 I S SOFTWARE
RESEARCH

TERMINATION

institute for
(c) 2016 Claire Le Goues 20 I S SOFTWARE
RESEARCH

Termination definitions

Ascending chain: A sequence o ,.is an ascending
chain ift n<mimplieso, C o, .

Height of an ascending chain: An ascending chain o,
has finite height h if it contains h+1 distinct
elements.

Height of a lattice: A lattice (L, C) has finite height h
if there is an ascending chain in the lattice of height
h, and no ascending chain in the lattice has height
greater than h.

Monotonicity: Function f is monotonic iff o, C o,
implies flo,) C f(o,)

institute for
(c) 2016 Claire Le Goues 21 I S SOFTWARE
RESEARCH

Theorem: Dataflow Analysis Termination

IF THE DATAFLOW LATTICE (L,C) HAS FINITE
HEIGHT, AND THE FLOW FUNCTIONS ARE

MONOTONIC, THE WORKLIST ALGORITHM
WILL TERMINATE.

o
nstitute for
(c) 2016 Claire Le Goues 22 I S SOFTWARE
RESEARCH

Why? Proof by induction

* Assume: The input state at every program point (other than
entry) starts at L

* Base case: The first time the flow function is run on each
instruction, the result will be at least as high in the lattice
as before (because nothing is lower than _L).

 Assume that the previous time we ran the flow function,
we had input information o; and output information o

* |f we are running it again, it’s because the input
information has changed to some new ¢,". By the induction
hypothesis, we can assume o, C o’

* We thus just need to prove is that o, C o', which will be
true if our flow functions are monotonic (by definition).

institute for
(c) 2016 Claire Le Goues 23 I S SOFTWARE
RESEARCH

Why? Proof by induction

e (Start of) Induction step:

— Assume that the previous time we ran the flow

function, we had input information o, and output
information o,.

— If we are running it again, it’s because the input
information has changed to some new ¢,'. By the
induction hypothesis, we can assume o, C o”.

* So, for termination, we just need to prove o, L

o', which will be true if our flow functions are
monotonic (by definition).

institute for
(c) 2016 Claire Le Goues 24 I S SOFTWARE
RESEARCH

...\Wait, why?

 Monotonicity means that the dataflow value at each
program point i can only increase each time o[i] is
assigned.

— So, the assignment can happen a maximum of h (lattice
height) times for each program point.

* This bounds the number of elements added to the
worklist to h * e (e=control flow graph edges).

 Since we remove one element of the worklist each
time the loop executes, the loop will execute no
more than h * e times.

* Thus, the algorithm will always terminate.

®
institute for
(c) 2016 Claire Le Goues 25 I S SOFTWARE
RESEARCH

Termination definitions

* Ascending chain: A sequence o, is an ascending
chainifft n<mimplieso, C o, .

* Height of an ascending chain: An ascending chain o,
has finite height h if it contains h+1 distinct
elements.

* Height of a lattice: A lattice (L, C) has finite height h
if there is an ascending chain in the lattice of height
h, and no ascending chain in the lattice has height
greater than h.

* Monotonicity: Function fis monotoniciff o, C o,
implies f(o,) E flo,)

institute for
(c) 2016 Claire Le Goues 26 I S SOFTWARE
RESEARCH

Zero analysis monotoncitiy

* Case fz|z:=0](c) =z — Z]o
— Assume o, L o,
— According to CC’s pointwise definition [x >
Zlo, C [x—=Z]o,
* Case fzlz =y[(o) =[xz — o(y)lo
—Assume o, L o,
— L pointwise definition means that o, (y) C
simple 0'2(Y)

— Therefore, using the pointwise definition of C
again, [x—> o (y)lo, Elx— o,(y)lo,

®
institute for
(c) 2016 Claire Le Goues 27 I S SOFTWARE
RESEARCH

Moar monotonicity!

LET’S DO ANOTHER RULE
TOGETHER

Tricksiness

* This only works if the lattice is of finite
height...

e ..hmmmm....
— (spoiler alert!)

®
institute for
(c) 2016 Claire Le Goues 29 I S SOFTWARE
RESEARCH

Correctness: Intuition

PROGRAM ANALYSIS RESULTS SHOULD
CORRECTLY DESCRIBE EVERY ACTUAL
CORRESPONDING PROGRAM EXECUTION.

o
institute for
(c) 2016 Claire Le Goues 30 I S SOFTWARE
RESEARCH

Correctness definitions

* Program Trace T of a program P is a potentially infinite
sequence { ¢,, ¢4, ... } of configurations, where c, = E,, 1 is the
initial configuration, and for everyi>0, P I ¢; ~» Cit1

* Theresult{ o, | i€ P }of adataflow analysis on program P is
sound iff, for all traces Tof P, Vis.t. 0 <i<length(T), a(c) C

On

i
* Adataflow analysis result { o, | i € P }is a fixed point iff o, C
o, where o is the initial analysis information and o is the
dataflow result before the first instruction, and for each

instruction i we have o, =|_|j € preds(i) f[[P[JH] (Uj)

institute for
(c) 2016 Claire Le Goues 31 I S SOFTWARE
RESEARCH

Exercise

e Consider the following (incorrect) flow
function for zero analysis:

fzle .=y + z|(c) = |z — Z]o
* Why? Prove it.

* Let’s do another example together, for
practice.

®
institute for
(c) 2016 Claire Le Goues 32 I S SOFTWARE
RESEARCH

Local soundness

* A flow function fis locally sound iff:
— P+ C; ~ Ci4-1
—and a(c) C o, and f[P[n](0;) = 011

imply a(c.,,)

p— O-i+1

®
institute for
(c) 2016 Claire Le Goues 33 I S SOFTWARE
RESEARCH

fzlx i =y+ z|(0) = |z — Zlo

Why? Prove it!

SO THIS DOESN'T WORK FOR OUR
FALSE FLOW FUNCTION...

Zero analysis: assign to zero

Case fz]|z :=0](0) = [z — Z]o

* Assume ¢, = E,n and a(E) = o,

* Thus oi+1 = fzlz :=0](0;) = [z = Z]a(E)
* step-const says ci+1 = [z +— 0]E,n+1

e the definition of « says a(z ~ 01E) = [z = Z]a(E)

* Therefore a(c,,) Co.

— Y I+l

o
institute for
(c) 2016 Claire Le Goues 35 I S SOFTWARE
RESEARCH

Zero analysis: assignh to not zero

Case fz[x:=m](o;) =[x = Nlo; where m # 0

* Assume ¢, =E,nand a(E) = o,

e Thus git1 = fz|x :=m](o;) = |[x — Nl|a(F)

* step-const says Ci+1 = | — m|E,n+1

* Now a(|lz — m|E) = [z — N|a(F) by the
definition of o and the assumption that m #
0.

* Therefore, a(c,,) C o

— Y i+l

o
institute for
(c) 2016 Claire Le Goues 36 I S SOFTWARE
RESEARCH

Zero analysis: operators

Case fzlz ==y op 2](0;) = [z —?]o;
* Assume ¢, = E,n and «(E) = o,
e Thus dir1 = fzl|x :=y op 2](0:) = [z —=7]a(F)
e step-const says that, for some K,
Ci+1 = [ZC —> k]E,n + 1
* Now a(fz = k|E) C [z =7a(E) because the map is

equal for all keys except x, and for x we have
aSimp/e(k) gsimple? for all k

* Therefore, a(c,,) C 0,4

®
institute for
(c) 2016 Claire Le Goues 37 I S SOFTWARE
RESEARCH

Zero analysis: assign to variable

Case fz|x :=y|(o) = |z — o(y)]o:

o
institute for
(c) 2016 Claire Le Goues 38 I S r SOFTWARE
RESEARCH

ALMOST THERE!

®
institute for
(c) 2016 Claire Le Goues 39 I S SOFTWARE
RESEARCH

Correctness definitions

* Program Trace T of a program P is a potentially infinite
sequence { ¢,, ¢4, ... } of configurations, where c, = E,, 1 is the
initial configuration, and for everyi>0, P I ¢; ~» Cit1

* Theresult{ o, | i€ P }of adataflow analysis on program P is
sound iff, for all traces Tof P, Vis.t. 0 <i<length(T), a(c) C

On

i
* Adataflow analysis result { o, | i € P }is a fixed point iff o, C
o, where o is the initial analysis information and o is the
dataflow result before the first instruction, and for each

instruction i we have o, =|_|j € preds(i) f[[P[JH] (Uj)

institute for
(c) 2016 Claire Le Goues 40 I S SOFTWARE
RESEARCH

Local Soundness implies Global
Soundness: If a dataflow analysis's
flow function f is monotonic and
locally sound, and for all traces T
we have a(c,) C o, where o is the
initial analysis information, then
any fixed point{ o, | i € P} of the
analysis is also sound.

®
institute for
(c) 2016 Claire Le Goues 41 I S SOFTWARE
RESEARCH

Proof: inductionon trace T

Case c:

* afc,) C o, by assumption.

* o, L On, by the definition of a fixed point.
* alc) C o, by the transitivity of T

®
institute for
(c) 2016 Claire Le Goues 42 I S SOFTWARE
RESEARCH

Proof: inductionon trace T

Case c.;:
* The induction hypothesis says: a(c) C o,
* The definition of a trace says:P | ¢; ~ c;41
* Local soundness says: a(cit1) E f[P[n;]](a(c;))
* Because fis monotone: f[P[ni]l(ca(c;)) E f[P[ns]](on,)
* The definition of a fixed point says:
Oniy = FIPNi]](on,) U ...
* The properties of join mean that: f[P[n]](on,) E on,.,

* And because L is transitive, a(c,,) C On.s

®

institute for

(c) 2016 Claire Le Goues 43 I S SOFTWARE
RESEARCH

Conclusion

e So since:

— The abstraction lattice maps to reality.

— The lattice has finite height.

— The flow functions are monotonic and locally
sound.

* ...Zero analysis is also sound/correct,
meaning its results on any program P
overapproximate (but never misrepresent)
reality.

institute for
(c) 2016 Claire Le Goues 44 I S SOFTWARE
RESEARCH

(c) 2016 Claire Le Goues

45

institute for
SOFTWARE
RESEARCH

