
Abstract	interpreta-on	part	2:	
more	of	the	same,	plus	widening	

Claire	Le	Goues	
15-819O:	Program	Analysis	

(c)	2016	Claire	Le	Goues	 1	

Correctness	holds	when:	

•  The	abstract	domain	laEce	has	finite	
height.	
•  The	flow	funcKons	are	monotonic.	
•  The	abstracKon	funcKon	is	correct.	
– Easy	enough	for	zero	analysis,	at	least.	

•  The	flow	funcKons	are	locally	sound.	
– Explicit	link	to	semanKcs!	

(c)	2016	Claire	Le	Goues	 2	

Collec-ng	Seman-cs	
•  Any	state	σ	has	type	Var	!	Z,	varies	from	program	point	to	

program	point.	
•  Properly	define	program	points	as	a	set	of	labels	

–  Now,	we	are	answering	quesKons	about	properKes	with	respect	
to	program	points	(e.g.,	is	x	always	posiKve	at	label	i?)	

•  To	answer	these	quesKons	define	contexts:		
C	2	Contexts.	C	has	type	Labels	!	P(Σ)	

–  For	each	label	i,	C(i)	=	all	possible	states	σ	at	label	i	
•  This	is	called	the	collec)ng	seman)cs	of	the	program	

–  Records	(super-)set	of	all	possible	traces	that	can	reach	a	
program	point	l	

–  This	is	basically	what	model	checkers	approximate!	

(c)	2016	Claire	Le	Goues	 3	

Back to Abstract Interpretation 	

•  Pick a complete lattice A (abstractions for P(Σ))	
–  Along with a monotonic abstraction α : P(Σ) ! A	

–  Alternatively, pick β : Σ ! A	

–  This uniquely defines its Galois connection γ	
•  Take the relations between Ci and move them to

the abstract domain:	
a : Label ! A	

•  Assignment	
 Concrete: Cj = {σ[x := n] | σ 2 Ci ^ e⇓σ = n}	
 Abstract: aj = α {σ[x := n] | σ 2 γ(ai) ^ e⇓σ = n}	

(c)	2016	Claire	Le	Goues	 4	

Correctness Condition	

•  In general, abstract interpretation satisfies
the following (amazingly common) diagram	

P(C)	

Exp	 A

C
2

γ	

σ

⇓	 α (·)	means	

concrete
domain	

abstract semantics	

abstract
domain	

abstraction	
function for sets	

concretization
function	

(c)	2016	Claire	Le	Goues	 5	

Other Abstract Domains	

•  Linear relationships between variables	
–  A convex polyhedron is a subset of Zk whose elements

satisfy a number of inequalities: 	
a1x1 + a2x2 + … + akxk ¸ ci	

–  This is a complete lattice; linear programming methods
compute lubs	

•  Linear relationships with at most two variables	
–  Convex polyhedra but with · 2 variables per constraint	
–  Octagons (x + y ¸ c) have efficient algorithms	

•  Modulus constraints (e.g. even and odd)	

(c)	2016	Claire	Le	Goues	 6	

Abstract Chatter	

•  AI, Dataflow and Software Model Checking	

–  The big three (aside from flow-insensitive type systems)
for program analyses	

•  Are in fact quite related:	
–  David Schmidt. Data flow analysis is model checking of

abstract interpretation. POPL ’98. 	
•  AI is usually flow-sensitive (per-label answer)	
•  AI can be path-sensitive (if your abstract domain

includes _, for example), which is just where
model checking uses BDD’s	

•  Metal, SLAM, ESP, … can all be viewed as AI	

(c)	2016	Claire	Le	Goues	 7	

Abstract Interpretation
Conclusions	

•  AI is a very powerful technique that underlies a
large number of program analyses	
–  Including Dataflow Analysis and Model Checking	

•  AI can also be applied to functional and logic
programming languages	

•  There are a few success stories	
–  Strictness analysis for lazy functional languages	
–  PolySpace for linear constraints	

•  In most other cases however AI is still slow	

•  When the lattices have infinite height and widening
heuristics are used the result becomes
unpredictable 	

(c)	2016	Claire	Le	Goues	 8	

Termina-on	holds	when:	

•  The	abstract	domain	has	finite	height		
– We’ve	stuck	to	domains	for	which	this	is	
trivially	true	so	far.	

•  The	flow	funcKons	are	monotonic		
– We	proved	this	just	by	looking	at	the	
definiKon	of	the	parKal	order	over	the	
abstract	state.	

(c)	2016	Claire	Le	Goues	 9	

Interval	analysis	

(c)	2016	Claire	Le	Goues	 10	

Flow	func-on	

(c)	2016	Claire	Le	Goues	 11	

No	loops.	

1. x : = 0
2. if x = y goto 5
3. x := x + 1
4. if x = y goto 5
5. y:= 0

(c)	2016	Claire	Le	Goues	 12	

Loops?	
1. x : = 0
2. if x = y goto 5
3. x := x + 1
4. goto 2
5. y:= 0

1.  y := x
2.  z := 1
3.  while [y > 1] do
4.  ([z := z * y] ;
5.  [y = y-1])
6.  y := 6

(c)	2016	Claire	Le	Goues	 13	

Example of Non-Termination	

•  The	analysis	never	terminates,	or	terminates	very	late	if	
the	loop	bound	is	known	staKcally	

•  It	is	Kme	to	approximate	even	more:	widening	
•  We	redefine	the	join	(lub)	operator	of	the	laEce	to	
ensure	that	from	[1..1]	upon	union	with	[2..2]	the	result	
is	[1..+1)	and	not	[1..2]	

•  Now	the	sequence	of	states	is	
–  [1..1],	[1,	+1),	[1,	+1),	Done	(no	more	infinite	chains)	

(c)	2016	Claire	Le	Goues	 14	

Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)	

•  A widening 5 : (P £ P) ! P on a poset hP,vi
satisfies:	
–  8 x, y 2 P . x v (x 5 y) ^ y v (x 5 y)	
–  For all increasing chains x0 v x1 v … the increasing chain

y0 =def x0, …, yn+1 =def yn 5 xn+1, … is not strictly
increasing.	

•  Two different main uses:	
–  Approximate missing lubs. (Not for us.) 	
–  Convergence acceleration. (This is the real use.) 	

•  A widening operator can be used to effectively compute an upper
approximation of the least fixpoint of F 2 L 5 L starting from
below when L is computer-representable but does not satisfy the
ascending chain condition. 	

	

(c)	2016	Claire	Le	Goues	 15	

Formally…	

(c)	2016	Claire	Le	Goues	 16	

Proper-es:	1/2	

•  Must	return	an	upper	bound	of	
operands.	
– Why?		
8	lprevious,	lcurrent	:		lprevious	v	W(lprevious,	lcurrent)	^		

																				lcurrent	v	W(lprevious,	lcurrent)	

(c)	2016	Claire	Le	Goues	 17	

Proper-es:	2/2	

• When	applied	to	an	ascending	chain,	the	
result	must	be	of	finite	height.	
– Why?	

l0W	=	l0	and	8	i	>	0	:	liW	=	W(li-1W,	li)	

(c)	2016	Claire	Le	Goues	 18	

Loss	of	precision!	
•  Nice	to	apply	only	when	necessary,	such	as	
only	at	loop	heads	(can	be	inferred).	

•  Or:	use	constants	in	program.		If	we	have	a	
“nearby”	constant,	like	10,	and	we	see	an	
ascending	chain,	we	can	hold	off	unKl	the	
top	of	the	chain	reaches	the	constant.	
– 	?,	[0,0],	[0,1],	[0,2],	[0,3],	...	becomes	?,	[0,0],	
[0,10],	…	
– If	it	keeps	ascending,	then	we	widen	to	infinity.			

(c)	2016	Claire	Le	Goues	 19	

More	formally	

(c)	2016	Claire	Le	Goues	 20	

Example	

1.  x := 0
2.  y := 1
3.  if x=10 goto 7
4.  x = x + 1
5.  y = y - 1
6.  goto 3
7.  skip

(c)	2016	Claire	Le	Goues	 21	

Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)	

•  A widening 5 : (P £ P) ! P on a poset hP,vi
satisfies:	
–  8 x, y 2 P . x v (x 5 y) ^ y v (x 5 y)	
–  For all increasing chains x0 v x1 v … the increasing chain

y0 =def x0, …, yn+1 =def yn 5 xn+1, … is not strictly
increasing.	

•  Two different main uses:	
–  Approximate missing lubs. (Not for us.) 	
–  Convergence acceleration. (This is the real use.) 	

•  A widening operator can be used to effectively compute an upper
approximation of the least fixpoint of F 2 L 5 L starting from
below when L is computer-representable but does not satisfy the
ascending chain condition. 	

	

(c)	2016	Claire	Le	Goues	 22	

Formal Widening Example
[1,1]5[1,2] = [1,+1)	

•  Range Analysis on z:	
L0: z := 1 ;	
L1: while z<99 do	

L2: z := z+1	

L3: done /* z ¸ 99 */	

L4: 	

yL4
0 = [99,+1)	xL4

0 = [99,+1)	
yL3

1 = [2,+1)	xL3
1 = [2,+1)	

yL2
1 = [1,+1)	xL2

1 = [1,2]	
yL3

0 = [2,2]	xL3
0 = [2,2]	

yL1
0 = [1,1]	xL1

0 = [1,1]	

stable (fewer than 99 iterations!)	

yL2
0 = [1,1]	xL2

0 = [1,1]	

yL0
0 = ?	xL0

0 = ?	

Widened yi	Original xi	

xLi
j =def the jth iterative attempt 	

to compute an abstract value for 	
z at label Li	

Recall lub S = [min(S)..max(S)]	
lub {[2,+1),[1,+1)} = {[1,+1)}	 (c)	2016	Claire	Le	Goues	 23	

One Slide Summary	

•  In abstract interpretation, the abstraction function
β and concretization function γ form a Galois
connection: they are almost inverses.	

•  To abstract the state σ at each program point we
use a collecting semantics (the abstract domain
holds sets of states). This shows the link between
abstract interpretation and model checking. 	

•  This will result in recursively-defined equations. We
use the fixed point theorem to solve them. This
shows the link between abstract interpretation and
dataflow analysis.	

•  Widening operators help accelerate convergence.	
(c)	2016	Claire	Le	Goues	 24	

Seman-cs,	redux.	

•  Imagine	we	want	to	add	a	new	for	loop	
statement	type	to	While:	
•  for	(x	=	e1,	x	op_r	e2,		x	:=	e3)	do	S	done	

•  Let’s	specify	that,	in	both	big-	and	small-
step	semanKcs.	

(c)	2016	Claire	Le	Goues	 25	

