Abstract interpretation part 2:
more of the same, plus widening

Claire Le Goues
15-8190: Program Analysis

®
institute for
(c) 2016 Claire Le Goues 1 I S SOFTWARE
RESEARCH

Correctness holds when:

e The abstraction function is correct.

— Easy enough for zero analysis, at least.

* The flow functions are locally sound.
— Explicit link to semantics!

®
institute for
(c) 2016 Claire Le Goues 2 I S SOFTWARE
RESEARCH

Collecting Semantics

* Any state o has type Var — Z, varies from program point to
program point.
* Properly define program points as a set of labels

— Now, we are answering questions about properties with respect
to program points (e.g., is x always positive at label i?)

 To answer these questions define contexts:
C € Contexts. C has type Labels — P(X)
— For each label i, C(i) = all possible states o at label i

e Thisis called the collecting semantics of the program

— Records (super-)set of all possible traces that can reach a
program point |
— This is basically what model checkers approximate!

institute for
(c) 2016 Claire Le Goues 3 I S SOFTWARE
RESEARCH

Back to Abstract Interpretation

e Pick a complete lattice A (abstractions for P(X))
- Along with a monotonic abstraction a : P(Z) — A

- Alternatively, pick f : £ — A
- This uniquely defines its Galois connection vy

» Take the relations between C. and move them to

the abstract domain:
a: Label — A

e Assignment
Concrete: C;={o[x:=n] | c € C; Ae|o =n}
Abstract: a; = o {o[x:=n] | o € y(a;) A elo =n}

®
institute for
(c) 2016 Claire Le Goues 4 I S SOFTWARE
RESEARCH

Correctness Condition

e In general, abstract interpretation satisfies
the following (amazmgly common) diagram

abstract semantics

i
omain
u v o ()

abstraction

concrete) function for sets
C P(C)
=

institute for
(c) 2016 Claire Le Goues 5 S SOFTWARE
RESEARCH

t

Other Abstract Domains

e Linear relationships between variables
- A convex polyhedron is a subset of Zk whose elements
satisfy a number of inequalities:
A Xq + @)Xy + ..o + X, > C
- This is a complete lattice; linear programming methods
compute lubs

e Linear relationships with at most two variables
- Convex polyhedra but with < 2 variables per constraint
- Octagons (x + y > c¢) have efficient algorithms

e Modulus constraints (e.g. even and odd)

®
institute for
(c) 2016 Claire Le Goues 6 I S SOFTWARE
RESEARCH

Abstract Chatter

Al, Dataflow and Software Model Checking
- The big three (aside from flow-insensitive type systems)
for program analyses

Are in fact quite related:
- David Schmidt. Data flow analysis is model checking of
abstract interpretation. POPL ’98.

Al is usually flow-sensitive (per-label answer)

Al can be path-sensitive (if your abstract domain
includes Vv, for example), which is just where
model checking uses BDD’s

Metal, SLAM, ESP, ... can all be viewed as Al

institute for
(c) 2016 Claire Le Goues 7 I S SOFTWARE
RESEARCH

Abstract Interpretation
Conclusions

Al is a very powerful technique that underlies a
large number of program analyses

- Including Dataflow Analysis and Model Checking
Al can also be applied to functional and logic
programming languages
There are a few success stories

- Strictness analysis for lazy functional languages
- PolySpace for linear constraints

In most other cases however Al is still slow

When the lattices have infinite height and widening
heuristics are used the result becomes
unpredictable

®
institute for
(c) 2016 Claire Le Goues 8 I S SOFTWARE
RESEARCH

Termination holds when:

* The abstract domain has finite height

—We've stuck to domains for which this is
trivially true so far.

e The flow functions are monotonic

—We proved this just by looking at the
definition of the partial order over the
abstract state.

®
institute for
(c) 2016 Claire Le Goues 9 I S SOFTWARE
RESEARCH

Interval analysis

= N, x N, where Ny, = N U {—00, 0}
fo lo <o l1 A By <o o

— mzngo(ll, lg) maﬂ?oo(hla h2)]

[— 00, 0]

= |00, —o0]

= T

= |z, x]

©
Institute (“r
I S SOFTWARE
RESEARCH

Flow function

frlz ==y + 2]|(0)

frlz .=y + 2] (o)

= |z —[l,h]]o

where | = o(y).low +o 0(2).low
and h = o(y).high +4 0(2).high
=0

where o(y) = L vo(z) =1

o
SOFTWARE
RESEARCH

(c) 2016 Claire Le Goues

12

institute for
SOFTWARE
RESEARCH

institute for
(c) 2016 Claire Le Goues 13 I S SOFTWARE
RESEARCH

Example of Non-Termination

* The analysis never terminates, or terminates very late if
the loop bound is known statically

e |tis time to approximate even more: widening

e We redefine the join (lub) operator of the lattice to
ensure that from [1..1] upon union with [2..2] the result
is [1..400) and not [1..2]

e Now the sequence of states is
- [1..1], [1, +00), [1, +00), Done (no more infinite chains)

®
institute for
(c) 2016 Claire Le Goues 14 I S SOFTWARE
RESEARCH

Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)

e Awidening 7 : (P x P) — P on a poset (P,C)
satisfies:

- VX, yeP. xEXxXvy A YECXTY)

- For all increasing chains x° C x' C ... the increasing chain
y0 =def 0yl =def yn o xnt1 - is not strictly
increasing.

e Two different main uses:
- Approximate missing lubs. (Not for us.)

- Convergence acceleration. (This is the real use.)

« A widening operator can be used to effectively compute an upper
approximation of the least fixpoint of F € L 1/ L starting from
below when L is computer-representable but does not satisfy the
ascending chain condition.

institute for
(c) 2016 Claire Le Goues 15 I S SOFTWARE
RESEARCH

Formally...

W(J_, lcurrent)

W (ll1, ha]; [l2, ha))

= current

— [mznw(ll, ZQ), maxw(h1, h2)]

where minyw (I1,13) = 11
and minyw (I1,1l3) = —o0

where maww(hl, hg) = hl
and maxw (hy, he) = 00

if ll < lg
otherwise

if h1 > ho
otherwise

institute for
I S SOFTWARE
RESEARCH

Properties: 1/2

 Must return an upper bound of
operands.
—Why?
VI |

C W(l

previous —

C W(l

current —

previous' lcurrent) /\

previous' Icurrent)

previous’ current)

®
institute for
(c) 2016 Claire Le Goues 17 I S SOFTWARE
RESEARCH

Properties: 2/2

* When applied to an ascending chain, the
result must be of finite height.

—Why?
W W=Il,and Vi>0:[W=wW(_,"W,I)

®
institute for
(c) 2016 Claire Le Goues 18 I S SOFTWARE
RESEARCH

Loss of precision!

* Nice to apply only when necessary, such as
only at loop heads (can be inferred).

* Or: use constants in program. If we have a
“nearby” constant, like 10, and we see an

ascending chain, we can hold off until the

top of the chain reaches the constant.

- 1,[0,0], [0,1], [0,2], [0O,3], ... becomes L, [0,0],
[0,10], ...

— If it keeps ascending, then we widen to infinity.

®
institute for
(c) 2016 Claire Le Goues 19 I S SOFTWARE
RESEARCH

More formally

W(J_, ! cu'r'rent) = current

W([l1, 1], |l2, ha]) = mink(l1,l2), maxk(hi, ha)]
where minK(ll, lg) = ll if ll S l2
and ming (l1,l2) = max({k € K|k <ls}) otherwise
where maxK(hl, hg) =]’Ll if hl Z hQ

and max g (hy,hs) = min({k € K|k > ho} otherwise

institute for
(c) 2016 Claire Le Goues 20 I S SOFTWARE
RESEARCH

. skip

. X =x + 1
- Y T Y -
. goto 3

1

. 1f x=10 goto 7

(c) 2016 Claire Le Goues

21

institute for
SOFTWARE
RESEARCH

Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)

e Awidening 7 : (P x P) — P on a poset (P,C)
satisfies:

- VX, yeP. xEXxXvy A YECXTY)

- For all increasing chains x° C x' C ... the increasing chain
y0 =def 0yl =def yn o xnt1 - is not strictly
increasing.

e Two different main uses:
- Approximate missing lubs. (Not for us.)

- Convergence acceleration. (This is the real use.)

« A widening operator can be used to effectively compute an upper
approximation of the least fixpoint of F € L 1/ L starting from
below when L is computer-representable but does not satisfy the
ascending chain condition.

institute for
(c) 2016 Claire Le Goues 22 I S SOFTWARE
RESEARCH

Formal Widening Example
[1,1]v[1,2] = [1,+00)

e Range Analysis on z: |Original x’ Widened y'

10: z:=1; X0 = | yo = |

L1: while z<99 do W =111 Y= (1,1

| 2: Z ;= Z+1 o 0 o .

3: done /*z>99*/ X% =[111 |y =111

| 4: XL3O = 2)2 yL30 = 2,2
X2, =[1,2] |y, = [1,+0)

xU; =def the jth iterative attempt XL31 = [2,+00)

to compute an abstract value for |fy14 _ :99’4_00) y|_40 — [99,_'_00)

z at label Li 0

stable (fewer than 99 iterations!)
2 —
016 Claire Le Goues 23 gﬁé}i\i{%

One Slide Summary

e In abstract interpretation, the abstraction function
B and concretization function y form a Galois
connection: they are almost inverses.

e To abstract the state o at each program point we
use a collecting semantics (the abstract domain
holds sets of states). This shows the link between
abstract interpretation and model checking.

e This will result in recursively-defined equations. We
use the fixed point theorem to solve them. This
shows the link between abstract interpretation and

dataflow analysis.
« Widening operators help accelerate convelrﬁwce.

institute for
SOFTWARE

(c) 2016 Claire Le Goues 24
RESEARCH

Semantics, redux.

* Imagine we want to add a new for loop
statement type to While:

* for(x=e,, x0p_re,, x:=e;)doSdone

e Let’s specify that, in both big- and small-
step semantics.

®
institute for
(c) 2016 Claire Le Goues 25 I S SOFTWARE
RESEARCH

