Abstract interpretation part 2:
more of the same, plus widening
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Correctness holds when:

e The abstraction function is correct.

— Easy enough for zero analysis, at least.

* The flow functions are locally sound.
— Explicit link to semantics!
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Collecting Semantics

* Any state o has type Var — Z, varies from program point to
program point.
* Properly define program points as a set of labels

— Now, we are answering questions about properties with respect
to program points (e.g., is x always positive at label i?)

 To answer these questions define contexts:
C € Contexts. C has type Labels — P(X)
— For each label i, C(i) = all possible states o at label i

e Thisis called the collecting semantics of the program

— Records (super-)set of all possible traces that can reach a
program point |
— This is basically what model checkers approximate!
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Back to Abstract Interpretation

e Pick a complete lattice A (abstractions for P(X) )
- Along with a monotonic abstraction a : P(Z) — A

- Alternatively, pick f : £ — A
- This uniquely defines its Galois connection vy

» Take the relations between C. and move them to

the abstract domain:
a: Label — A

e Assignment
Concrete: C;={o[x:=n] | c € C; Ae|o =n}
Abstract: a; = o {o[x:=n] | o € y(a;) A elo =n}
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Correctness Condition

e In general, abstract interpretation satisfies
the following (amazmgly common) diagram

abstract semantics

i
omain
u v o ()

abstraction

concrete ) function for sets
C P(C)
=
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Other Abstract Domains

e Linear relationships between variables
- A convex polyhedron is a subset of Zk whose elements
satisfy a number of inequalities:
A Xq + @)Xy + ..o + X, > C
- This is a complete lattice; linear programming methods
compute lubs

e Linear relationships with at most two variables
- Convex polyhedra but with < 2 variables per constraint
- Octagons (x + y > c¢) have efficient algorithms

e Modulus constraints (e.g. even and odd)
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Abstract Chatter

Al, Dataflow and Software Model Checking
- The big three (aside from flow-insensitive type systems)
for program analyses

Are in fact quite related:
- David Schmidt. Data flow analysis is model checking of
abstract interpretation. POPL ’98.

Al is usually flow-sensitive (per-label answer)

Al can be path-sensitive (if your abstract domain
includes Vv, for example), which is just where
model checking uses BDD’s

Metal, SLAM, ESP, ... can all be viewed as Al
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Abstract Interpretation
Conclusions

Al is a very powerful technique that underlies a
large number of program analyses

- Including Dataflow Analysis and Model Checking
Al can also be applied to functional and logic
programming languages
There are a few success stories

- Strictness analysis for lazy functional languages
- PolySpace for linear constraints

In most other cases however Al is still slow

When the lattices have infinite height and widening
heuristics are used the result becomes
unpredictable
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Termination holds when:

* The abstract domain has finite height

—We've stuck to domains for which this is
trivially true so far.

e The flow functions are monotonic

—We proved this just by looking at the
definition of the partial order over the
abstract state.
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Interval analysis

= N, x N, where Ny, = N U {—00, 0}
fo lo <o l1 A By <o o

— mzngo(ll, lg) maﬂ?oo(hla h2)]

[ — 00, 0]

= |00, —o0]

= T

= |z, x]
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Flow function

frlz ==y + 2]|(0)

frlz .=y + 2] (o)

= |z —[l,h]]o

where | = o(y).low +o 0(2).low
and h = o(y).high +4 0(2).high
=0

where o(y) = L vo(z) =1
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Example of Non-Termination

* The analysis never terminates, or terminates very late if
the loop bound is known statically

e |tis time to approximate even more: widening

e We redefine the join (lub) operator of the lattice to
ensure that from [1..1] upon union with [2..2] the result
is [1..400) and not [1..2]

e Now the sequence of states is
- [1..1], [1, +00), [1, +00), Done (no more infinite chains)

®
institute for
(c) 2016 Claire Le Goues 14 I S SOFTWARE
RESEARCH



Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)

e Awidening 7 : (P x P) — P on a poset (P,C)
satisfies:

- VX, yeP. xEXxXvy A YECXTY)

- For all increasing chains x° C x' C ... the increasing chain
y0 =def 0yl =def yn o xnt1 - is not strictly
increasing.

e Two different main uses:
- Approximate missing lubs. (Not for us.)

- Convergence acceleration. (This is the real use.)

« A widening operator can be used to effectively compute an upper
approximation of the least fixpoint of F € L 1/ L starting from
below when L is computer-representable but does not satisfy the
ascending chain condition.
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Formally...

W(J_, lcurrent)

W (ll1, ha]; [l2, ha))

= current

— [mznw(ll, ZQ), maxw(h1, h2)]

where minyw (I1,13) = 11
and minyw (I1,1l3) = —o0

where maww(hl, hg) = hl
and maxw (hy, he) = 00

if ll < lg
otherwise

if h1 > ho
otherwise
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Properties: 1/2

 Must return an upper bound of
operands.
—Why?
VI |

C W(l

previous —

C W(l

current —

previous' lcurrent) /\

previous' Icurrent )

previous’ current)
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Properties: 2/2

* When applied to an ascending chain, the
result must be of finite height.

—Why?
W W=Il,and Vi>0:[W=wW(_,"W,I)
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Loss of precision!

* Nice to apply only when necessary, such as
only at loop heads (can be inferred).

* Or: use constants in program. If we have a
“nearby” constant, like 10, and we see an

ascending chain, we can hold off until the

top of the chain reaches the constant.

- 1,[0,0], [0,1], [0,2], [0O,3], ... becomes L, [0,0],
[0,10], ...

— If it keeps ascending, then we widen to infinity.
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More formally

W(J_, ! cu'r'rent) = current

W([l1, 1], |l2, ha]) = mink(l1,l2), maxk(hi, ha)]
where minK(ll, lg) = ll if ll S l2
and ming (l1,l2) = max({k € K|k <ls}) otherwise
where maxK(hl, hg) = ]’Ll if hl Z hQ

and max g (hy,hs) = min({k € K|k > ho} otherwise
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. skip

. X =x + 1
- Y T Y -
. goto 3

1

. 1f x=10 goto 7
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Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)

e Awidening 7 : (P x P) — P on a poset (P,C)
satisfies:

- VX, yeP. xEXxXvy A YECXTY)

- For all increasing chains x° C x' C ... the increasing chain
y0 =def 0yl =def yn o xnt1 - is not strictly
increasing.

e Two different main uses:
- Approximate missing lubs. (Not for us.)

- Convergence acceleration. (This is the real use.)

« A widening operator can be used to effectively compute an upper
approximation of the least fixpoint of F € L 1/ L starting from
below when L is computer-representable but does not satisfy the
ascending chain condition.

institute for
(c) 2016 Claire Le Goues 22 I S SOFTWARE
RESEARCH



Formal Widening Example
[1,1]v[1,2] = [1,+00)

e Range Analysis on z: |Original x’ Widened y'

10: z:=1; X0 = | yo = |

L1: while z<99 do W =111 Y= (1,1

| 2: Z ;= Z+1 o 0 o .

3: done /*z>99*/ X% =[111 |y =111

| 4: XL3O = 2)2 yL30 = 2,2
X2, =[1,2] |y, = [1,+0)

xU; =def the jth iterative attempt XL31 = [2,+00)

to compute an abstract value for |fy14 _ :99’4_00) y|_40 — [99,_'_00)

z at label Li 0

stable (fewer than 99 iterations!)
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One Slide Summary

e In abstract interpretation, the abstraction function
B and concretization function y form a Galois
connection: they are almost inverses.

e To abstract the state o at each program point we
use a collecting semantics (the abstract domain
holds sets of states). This shows the link between
abstract interpretation and model checking.

e This will result in recursively-defined equations. We
use the fixed point theorem to solve them. This
shows the link between abstract interpretation and

dataflow analysis.
« Widening operators help accelerate convelrﬁwce.
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Semantics, redux.

* Imagine we want to add a new for loop
statement type to While:

* for(x=e,, x0p_re,, x:=e;)doSdone

e Let’s specify that, in both big- and small-
step semantics.
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