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Ant	and	grasshopper	

•  (Historical	comment	on	the	?tle.)	
• What	is	the	par?cular	feature	of	points-
to	sets	that	the	paper	targets?	

• What	are	the	two	mechanisms	they	use	
to	do	so?	
– Tradeoffs	between	them?	

• What	do	you	think?	
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WHAT	IS	A	BUFFER	OVERFLOW?	
And	why	are	we	spending	a	lecture	on	them?	
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Basic	Buffer	Overflow	
boolean rootPriv = false; 
char name[8]; 

cin >> name; 

•  When	the	program	reads	the	name	“Smith”	

S m i t h false	

char name[8] rootPriv 
From	“teaching	buffer	overflow”	 4	



Basic	Buffer	Overflow	
boolean rootPriv = false; 
char name[8]; 

cin >> name; 

•  When	the	program	reads	the	name	“Armstrong”	

A r m s t r o n g	

char name[8] rootPriv 
From	“teaching	buffer	overflow”	 5	



Program	Memory	OrganizaIon	
Program instructions 

Global data 

Stack 

Heap 

Intel	method	
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Stack	Overflow	
•  A	stack	overflow	exploit	occurs	when	a	user	
enters	data	that	exceeds	the	memory	reserved	
for	the	input.	The	input	can	change	adjacent	
data	or	the	return	address	on	the	stack.	
– Dis?nct	from	non-malicious	stack	overflows.	

W	 X	 Y	 Z	 0	 0	 0	 0	 Return	address	
char myStuff[4]; 

Program	Stack	
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•  Basic	exploit:	executable	aaack	code	is	stored	on	
stack,	in	the	buffer	containing	aaacker’s	string		
–  Stack	memory	usually	contains	only	data,	but…	

•  For	the	basic	exploit,	overflow	por?on	of	the	
buffer	must	contain	correct	address	of	aaack	
code	in	the	RET	posi?on	
– The	value	in	the	RET	posi?on	must	point	to	the	
beginning	of	aaack	assembly	code	in	the	buffer	

•  Otherwise	applica?on	will	crash	with	segmenta?on	
viola?on	

– Aaacker	must	correctly	guess	in	which	stack	posi?on	
his	buffer	will	be	when	the	func?on	is	called	

Basic	exploit	
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Buffer	overflows	
•  Extremely	common	bug;	Ofen	leads	to	total	
compromise	of	host.	

•  First	internet	worm:	The	Morris	Worm.	
•  10	years	later:				over	50%	of	all	CERT	advisories:	

– 1997:		16	out	of	28				CERT	advisories.	
– 1998:			9	out	of	13													-”-	
– 1999:			6	out	of	12													-”-	

•  Fortunately:		exploit	requires	exper?se	and	
pa?ence		

•  Two	steps:	
–  Locate	buffer	overflow	within	an	applica?on.	
– Design	an	exploit.	
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source:	DHS	Na?onal	Cyber	Security	Division/US-CERT	Na?onal	Vulnerability	Database	10	



InsecuriIes	
•  Of	126	CERT	security	advisories	of	2000-2004:	

–  87	are	memory	corrup?on	vulnerabili?es	
–  73	are	in	applica?ons	providing	remote	services	

•  13	in	HTTP	servers,	7	in	database	services,	6	in	remote	login	
services,	4	in	mail	services,	3	in	FTP	services	

•  Most	exploits	involve	illegi?mate	control	transfers	
–  Jumps	to	injected	aaack	code,	return-to-libc,	etc.	
–  Therefore,	most	defenses	focus	on	control-flow	security	
–  But	exploits	can	also	target	configura?ons,	user	data	and	
decision-making	values	

•  When	a	security	alert	contains	the	phrase	“The most severe 
of these vulnerabilities allows a remote attacker to 
execute arbitrary code.”---probably	a	buffer	overflow.	
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Stack	Basics	
•  A	stack	consists	of	logical	stack	frames	that	

are	pushed	when	calling	a	func?on	and	
popped	when	returning.		

•  When	a	func?on	is	called,	the	return	
address,	stack	frame	pointer	and	the	
variables	are	pushed	on	the	stack	(in	that	
order).		

	
•  So	the	return	address	has	a	higher	address	

than	the	buffer.		
	
•  When	we	overflow	the	buffer,	the	return	

address	will	be	overwriaen.		

High	memory	
addresses	

Lower	memory	
addresses	
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Stack	Buffers	

•  Consider:	
void func(char *str) {

           char buf[126];
           strcpy(buf,str);
     }

• When	this	func?on	is	invoked,	a	new	
frame	is	pushed	onto	the	stack:	

Allocate local buffer 
(126 bytes reserved on stack) 

Copy argument into local buffer 

Top	of	
stack	

Stack	grows	this	way	

buf	 sfp	 ret	
addr	 str	

Local	variables	

Frame	of	the	
calling	func1on	

Execute		
code	at		
this	address		
afer	func()	
finishes	

Arguments	Pointer	to	
previous	
frame	
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Overfull	buffer?	

•  Memory	pointed	to	by	str	is	copied	onto	
stack…	
  void func(char *str) { 

           char buf[126]; 
           strcpy(buf,str); 
      } 

•  If	a	string	longer	than	126	bytes	is	copied	into	
buffer,	it	will	overwrite	adjacent	stack	
loca?ons:	

strcpy	does	not	check	whether	the	string		
at	*str	contains	fewer	than	126	characters	

buf	 str	

This	will	be	
interpreted	
as	return	address!	

overflow	
Top	of	
stack	

Frame	of	the	
calling	func1on	
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ExecuIng	ANack	Code	
•  Suppose	buffer	contains	aaacker-created	string	

–  For	example,	*str	contains	a	string	received	from	the	
network	as	input	to	some	network	service	daemon	

	

•  When	func?on	exits,	code	in	the	buffer	will	be		
				executed,	giving	aaacker	a	shell	

– Root	shell	if	the	vic?m	program	is	setuid	root	

code	 str	 Frame	of	the	
calling	func1on	ret	

Aaacker	puts	actual	assembly		
instruc?ons	into	his	input	string,	e.g.,	
binary	code	of	execve(“/bin/sh”)	

Pointer	back	into	the	buffer	appears	
in	the	loca?on	where	the	system	
expects	to	find	return	address	

Top	of	
stack	
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Stacks,	again	
•  Consider	the	func?on:	
void thefunc( float &dog, int cat ){ 

 char cow[4]; 
} 

•  …called	by	the	main	program:	
int oak = 5; 
float  pine = 7.0; 
float *birch = &pine; 
thefunc( birch, oak ); 
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Stack	for	Call	
•  push			oak	
•  push			birch	
•  push	return	address	
•  push	frame	pointer	
•  Allocate	space	for	local	
variable,	cow[4]	

	
thefunc( birch, oak ); 

5	(value	of	oak)	
address	of	pine	
return	address	
Addr	of	last	frame	

cow[4]	
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Overflowing	Local	Variables	

•  On	an	Intel	processor	(and	
many	others),	stack	is	
extended	to	lower	
addresses	

•  If	you	address	beyond	a	
local	variable,	you	
overwrite	the	return	
address.	

5	(value	of	oak)	
address	of	pine	
return	address	
Addr	of	last	frame	

cow[4]	
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Hacking	the	Stack	
•  If	a	program	does	not		
check	array	bounds,	it	may	be	
possible	to	give	the	program	
special	input	that	
overwrites	the	return	address	
with	a	binary	value.	

•  cow[8]	to	cow[11]	are	the	
return	address	

5	(value	of	oak)	
address	of	pine	
return	address	
Addr	of	last	frame	

cow[4]	
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Hacking	the	Stack	

•  The	return	address	can	be	
changed	to	the	address	of	
a	func?on	in	the	program.	

•  Func?on	parameters	can	
also	be	put	on	the	stack	

5	(value	of	oak)	
address	of	pine	
return	addr=‘?’	

Frame	ptr	=	
‘wxyz’	

cow[4]=‘abcd’	
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int	foo	(void	(*funcp)())	{	
				char*	ptr	=	point_to_an_array;	
				char	buf[128];	
				gets	(buf);	
				strncpy(ptr,	buf,	8);	
				(*funcp)();	
}	

String 
grows 

Stack 
grows 

int	bar	(int	val1)	{	
				int		val2;	
				foo	(a_func?on_pointer);	
}	

Contaminated	
memory	

Most	popular	
target	

val1 
val2 

arguments       (funcp) 
return address 
Previous Frame Pointer 
pointer var       (ptr) 
buffer               (buf) 

Stack Corruption: General 
View 
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args                 (funcp) 
return address 
PFP 
pointer var       (ptr) 
buffer               (buf) 

Aaack	code	

Fake return addr 
Fake PFP 

Attack #2: Frame Pointer 

①  Change the caller’s saved frame 
pointer to point to attack-controlled 
memory. Caller’s return address will 
be read from this memory. 
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args               (funcp) 
return address 
PFP 
pointer var       (ptr) 
buffer               (buf) 

	Aaack	code	

①  Change a function pointer to point 
to the attack code. 

②  Any memory, even outside the 
stack, can be modified by the 
statement that stores a value into 
the compromised pointer. 

 strncpy(ptr,	buf,	8);	
						*ptr	=	0;	

Function pointer 

  Global Offset Table 

①

　

②

　

Attack #3: Pointer Variables 
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CAUSES?	
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Unsafe	funcIons	
•  strcpy	does	not	check	input	size	

– strcpy(buf,	str)	simply	copies	memory	contents	
into	buf	star?ng	from	*str	un?l	“\0”	is	
encountered,	ignoring	the	size	of	area	
allocated	to	buf	

•  Many	C	library	func?ons	are	unsafe	
– strcpy(char	*dest,	const	char	*src)	
– strcat(char	*dest,	const	char	*src)	
– gets(char	*s)	
– scanf(const	char	*format,	…)	
– prinz(const	char	*format,	…)		
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Other	unsafe	I/O	FuncIons	
•  gets():	has	no	way	to	limit	input	length.	
• Use	precision	specifiers	with	the	scanf()	
family	of	func?ons	(scanf(),	fscanf(),	sscanf(),	
etc.).		Otherwise	they	will	not	do	any	bounds	
checking	for	you.	

• cin >> char[] will	read	more	
characters	than	the	length	of	the	string.	

•  The	cin.get	and	cin.getline	
func?ons	allow	you	to	specify	a	maximum	
input	length.	
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•  Home-brewed range-checking string copy: 
   void notSoSafeCopy(char *input) { 

          char buffer[512]; int i;  
             for (i=0; i<=512; i++) 
                 buffer[i] = input[i];  
        } 
        void main(int argc, char *argv[]) { 
             if (argc==2)  
                notSoSafeCopy(argv[1]); 
        } 

Off-By-One Overflow 

•  1-byte	overflow:	can’t	change	RET,	but	can	change	
pointer	to	previous	stack	frame	
On	liale-endian	architecture,	make	it	point	into	buffer	
RET	for	previous	func?on	will	be	read	from	buffer!	

This will copy 513 
characters into 
buffer. Oops! 
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More	on	Off-by-one	errors	
• Off-by-one	errors	occur	when	a	programmer	
takes	the	proper	precau?ons	in	terms	of	
bounds	checking,	but	forgets	that	the	last	
index	is	one	less	than	the	size.	

•  In	C	strings	are	terminated	by	a	null	
character.		Programmers	ofen	forget	to	
reserve	space	for	the	null	terminator.	

• char myString[10]	can	only	hold	9	
printable	characters,	indexed	from	0	to	8.	
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Data	Expansion	
•  The	size	in	bytes	of	the	input	might	not	be	
what	causes	the	buffer	overflow,	it	might	be	
the	input	itself.			
– For	example,	if	you’re	conver?ng	a	large	
integer	to	a	string	(maybe	in	binary)	make	sure	
the	buffer	is	long	enough	to	hold	all	possible	
outputs	

– When	conver?ng	special	characters	for	web	
pages	(i.e.	“>”	to	“&gt;”)	the	output	can	
become	much	larger	

– Unicode	is	twice	the	size	of	ASCII	
29	



STATIC	APPROACHES	
Any	ideas?	
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SOME	OBVIOUS	HEURISTICS	
Coverity,	FindBugs,	Etc.	
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Safer	Languages	

•  Several	modern	languages	have	built-in	
protec?on	against	stack	overflow.	

•  Java	and	C#	check	every	array	reference	
to	ensure	that	it	is	within	bounds.	
– Java	does	not	allow	stack	viola?ons.	
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Data	ExecuIon	PrevenIon	
•  Most	newer	processors	have	a	bit	in	the	
page	table	that	inhibits	instruc?on	fetches	
from	that	page.	

•  Newer	opera?ng	systems	can	set	data	
execu?on	preven?on	for	stacks.	

•  This	prevents	the	program	from	execu?ng	
machine	language	loaded	on	the	stack	by	an	
exploit.	

•  This	does	not	prevent	programs	from	
overwri?ng	the	return	address.	
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•  Let	s	be	some	string	variable	used	in	the	
program	

•  len(s)	is	the	set	of	possible	lengths	
– Why	is	len(s)	not	a	single	integer,	but	a	set?	

•  alloc(s)	is	the	set	of	possible	values	for	the	
number	of	bytes	allocated	for	s	
– Is	it	possible	to	compute	len(s)	and	alloc(s)	
precisely	at	compile-?me?	

•  At	each	point	in	program	execu?on,	want		
	 	 	len(s)	≤	alloc(s)	

Safety	CondiIon	
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Pointer	analysis	challenges	

Flow-insensiIve		
1.  int main() {
2.    int i = 0;
3.    int j = 20;
4.    int *p;
5.    int A[10];
6.    p = &j;
7.    p = &i;
8.    A[ *p ] = 42;
9.  }

Context-insensiIve	
1.  int *id( int *a ) {
2.     return a;
3.  }
4.  int main() {
5.    int i = 0, j = 20;
6.    int *p, *q;
7.    int A[10];
8.    q = id(&j);
9.    p = id(&i);
10.   A[ *p ] = 42;
11. }
12.  
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TYPE	SYSTEMS	
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BOON 

•  Treat	C	strings	as	abstract	data	types	
– Assume	that	C	strings	are	accessed	only	through	
library	func?ons:	strcpy,	strcat,	etc.	

– Pointer	arithme?c	is	greatly	simplified		
			(what	does	this	imply	for	soundness?)	

•  Characterize	each	buffer	by	its	allocated	size	
and	current	length	(number	of	bytes	in	use)	

•  For	each	of	these	values,	sta?cally	determine	
acceptable	range	at	each	point	of	the	program	
– Done	at	compile-?me,	thus	necessarily	conserva?ve	
(what	does	this	imply	for	completeness?)	

[Wagner et al., 2000] 
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Integer	Constraints	

•  Every	string	opera?on	is	associated	with	a	
constraint	describing	its	effects	

strcpy(dst,src)	
strncpy(dst,src,n)	
gets(s)	
s=“Hello!”	
s[n]=‘\0’	

len(src) ⊆ len(dst) 
min(len(src),n) ⊆ len(dst) 
[1,∞] ⊆ len(s) 
7 ⊆ len(s), 7 ⊆ alloc(s) 
min(len(s),n+1)) ⊆ len(s) 
and so on 

Does	this	fully	
capture	what	
strncpy	does?	

Range	of	
possible	values	
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Constraint	GeneraIon	Example	

char buf[128]; 

while (fgets(buf, 128, stdin)) { 

    if (!strchr(buf, ‘\n’)) { 

       char error[128]; 

       sprintf(error,“Line too long: %s\n,buf); 

       die(error); 

    } 

… 

} 

128	⊆	alloc(buf)	

[1,128]	⊆	len(buf)	

128	⊆	alloc(error)	

len(buf)+16	⊆	len(error)	

[Wagner]	
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Imprecision	
•  Simplifies	pointer	arithme?c	and	pointer	
aliasing	
– For	example,	q=p+j	is	associated	with	this	
constraint:	alloc(p)-j	⊆	alloc(q),	len(p)-j	⊆	len(q)	

– This	is	unsound	(why?)	
•  Ignores	func?on	pointers	
•  Ignores	control	flow	and	order	of	statements	

– Consequence:	every	non-trivial	strcat()	must	be	
flagged	as	a	poten?al	buffer	overflow	(why?)	

•  Merges	informa?on	from	all	call	sites	of	a	
func?on	into	one	variable	
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Constraint	Solving	
•  “Bounding-box”	algorithm	(see	paper)	

–  Imprecise,	but	scalable:	sendmail	(32K	LoC)	yields	a	
system	with	9,000	variables	and	29,000	constraints	

•  Suppose	analysis	discovers	len(s)	is	in	[a,b]	range,	
and	alloc(s)	is	in	[c,d]	range	at	some	point	
–  If	b	≤	c,	then	code	is	“safe”	

•  Does	not	completely	rule	out	buffer	overflow	(why?)	
–  If	a	>	d,	then	buffer	overflow	always	occurs	here	
–  If	ranges	overlap,	overflow	is	possible	

•  Ganapathy	et	al.:	model	and	solve	the	constraints	
as	a	linear	program	(see	paper)	
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PracIcal	Results	
•  Found	new	vulnerabili?es	in	real	systems	code	

– Exploitable	buffer	overflows	in	neaools	and	
sendmail	

•  Lots	of	false	posi?ves,	but	s?ll	a	drama?c	
improvement	over	hand	search	
– sendmail:	over	700	calls	to	unsafe	string	
func?ons,	of	them	44	flagged	as	dangerous,	4	
are	real	errors	

– Example	of	a	false	alarm:	
	 	if	(sizeof	from	<	strlen(e->e_from.q_paddr)+1)	break;	
	 	strcpy(from,	e->e_from.q_paddr);	
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  foo () {                                  bar () { 

   int x;                                    int y; 
      x = foobar(5);                       y = foobar(30); 
  }                                           } 
 
                          int foobar (int z) { 
                              int i; 
                              i = z + 1; 
                              return i; 
                           } 

False path 
Result: x = y = [6..31] 

Context-InsensiIvity	is	Imprecise	
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Adding	Context	SensiIvity	
•  Make	user	func?ons	context-sensi?ve	

– For	example,	wrappers	around	library	calls	
•  Inefficient	method:	constraint	inlining	

– J	Can	separate	calling	contexts	
– L	Large	number	of	constraint	variables	
– L	Cannot	support	recursion	

•  Efficient	method:	procedure	summaries	
– Summarize	the	called	procedure	
– Insert	the	summary	at	the	callsite	in	the	caller	
– Remove	false	paths	

[Ganapathy et al.] 
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  foo () {                                  bar () { 

   int x;                                    int y; 
      x = foobar(5);                       y = foobar(30); 
  }                                           } 
 
                          int foobar (int z) { 
                              int i; 
                              i = z + 1; 
                              return i; 
                           } 

Context-SensiIve	Analysis	
[Ganapathy	et	al.]	

x = 5 + 1 y = 30 + 1 

Summary: i = z + 1 
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DIVERSION	INTO	DYNAMIC	
APPROACHES	
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Run	Ime	checking:	StackGuard	
•  Many	many	run-?me	checking	techniques	…	
•  Solu?on:		StackGuard		(WireX)	

– Run	?me	tests	for	stack	integrity.		
– Enhance	the	code	generator	for	emi�ng	
code	to	set	up	and	tear	down	func?ons	

– Embeds	“canaries”	in	stack	frames	and	
verify	their	integrity	prior	to	func?on	return.	

str ret sfp local 
top 
of 

stack 
canary str ret sfp local canary 

Frame 1 Frame 2 
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Stack	Canaries	
•  A	stack	canary	is	a	random	
number	placed	on	the	stack	
between	the	user	data	and	the	
return	address.	

•  Overflowing	the	local	variable	
and	changing	the	return	
address	will	also	change	the	
stack	canary	

•  Before	returning,	the	program	
checks	the	canary	value.	

5	(value	of	oak)	
address	of	pine	
return	address	
Addr	of	last	frame	

Stack	canary	
cow[4]	
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StackGuard	
•  Prevents	changes	to	

ac?ve	RAs	in	2	ways:	
1.  By	detec?ng	change	of	the	

RA	before	the	func?on	
returns.	(more	efficient	
and	portable).	

2.  By	completely	preven?ng	
the	write	to	the	RA	(more	
secure).	

Canary Word Next to 
Return Address 

Top of Stack 

Return Address 
Canary Word 

Local Variables… 
buffer 

0xffff 

0x0000 

St
ac

k 
G

ro
w

th
 

St
ri

ng
 G

ro
w

th
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StackGuard	-	DetecIng	RA	Change	Before	
Return	
•  Detec?on	done	before	a	func?on	returns.	
•  A	canary	word	placed	next	to	the	RA	on	the	
stack.	

•  When	func?on	returns,	it	first	checks	to	see	
that	the	canary	word	is	intact	before	
jumping	to	the	RA	pointed	word.	

•  Key:	RA	is	unaltered	iff	the	canary	word	is	
unaltered.		(How?)	–	true	for	buffer	overflow	
aaacks.	
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StackGuard	-	DetecIng	RA	Change	Before	
Return	

•  StackGuard	implementa?on	-	simple	patch	
to	gcc	2.7.2.2.	

•  gcc	func?on_prologue	and	
func?on_epilogue	func?ons	-	altered	to	emit	
code	to	place	and	check	canary	words.	

•  Problem:	Aaackers	can	develop	buffer	
overflows	insensi?ve	to	StackGuard.	

•  Solu1on:	Randomize	the	Canary.	
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Canary	Types	
•  Random	canary:		(used	in	Visual	Studio	2003)	

– Choose	random	string	at	program	startup.	
– Insert	canary	string	into	every	stack	frame.	
– Verify	canary	before	returning	from	func?on.	
– To	corrupt	random	canary,	aaacker	must	learn	
current	random	string.	

•  Terminator	canary:	
	Canary	=		0	(null),	newline,	linefeed,	EOF	

– String	func?ons	will	not	copy	beyond	terminator.	
– Hence,	aaacker	cannot	use	string	func?ons	to	
corrupt	stack. 		
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More	methods	…	
•  	Address	obfusca?on.				(Stony	Brook	’03)	

– Encrypt	return	address	on	stack	by	XORing	
with	random	string.		Decrypt	just	before	
returning	from	func?on.	

– Aaacker	needs	decryp?on	key	to	set	return	
address	to	desired	value.	

•  	PaX ASLR:		Randomize	loca?on	of	libc.	
– Aaacker	cannot	jump	directly	to	exec	func?on.	
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BACK	TO	TYPE	SYSTEMS	
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CCured	
•  Goal:	make	legacy	C	code	type-safe	
•  Treat	C	as	a	mixture	of	a	strongly	typed,	
sta?cally	checked	language	and	an	“unsafe”	
language	checked	at	run?me	
– All	values	belong	either	to	“safe,”	or	“unsafe”	world	

•  Combina?on	of	sta?c	and	dynamic	checking	
– Check	type	safety	at	compile-?me	whenever	
possible	

– When	compile-?me	checking	fails,	compiler	inserts	
run-?me	checks	in	the	code	

–  Fewer	run-?me	checks	⇒	beaer	performance	

[Necula et al.] 
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Example Dependent Typing Rules 
 
 

Note that expressions are now part of types 
Have types like “vector 5” and “vector (2 + 3)” 
We need type equivalence 

56	



Ccured:	Safe	Pointers	
•  Either NULL, or a valid address of type T 
•  Aliases are either safe pointers, or sequence 

pointers of base type T 
•  What is legal to do with a safe pointer? 

– Set to NULL 
– Cast from a sequence pointer of base type T 
– Cast to an integer 

•  What runtime checks are required? 
– Not equal to NULL when dereferenced 
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Sequence Pointers 
•  At	run?me,	either	an	integer,	or	points	to	a	known	
memory	area	containing	values	of	type	T	

•  Aliases	are	safe,	or	sequence	ptrs	of	base	type	T	
•  What	is	legal	to	do	with	a	sequence	pointer?	

–  Perform	pointer	arithme?c	
–  Cast	to	a	safe	pointer	of	base	type	T	
–  Cast	to	or	from	an	integer	

•  What	run?me	checks	are	required?	
–  Points	to	a	valid	address	when	dereferenced	

•  Subsumes	NULL	checking	
–  Bounds	check	when	dereferenced	or	cast	to	safe	ptr	
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Dynamic Pointers 
•  At	run?me,	either	an	integer,	or	points	to	a	known	
memory	area	containing	values	of	type	T	

•  The	memory	area	to	which	it	points	has	tags	that	
dis?nguish	integers	from	pointers	

•  Aliases	are	dynamic	pointers	
•  What	is	legal	to	do	with	a	dynamic	pointer?	

–  Perform	pointer	arithme?c	
–  Cast	to	or	from	an	integer	or	any	dynamic	pointer	type	

•  Run?me	checks	of	address	validity	and	bounds	
– Maintain	tags	when	reading	&	wri?ng	to	base	area	
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int **a; 
int i; 
int acc; 
int **p; 
int *e; 
acc=0; 
for(i=0; i<100;i++){ 
    p= a + i; 
    e = *p; 
    while((int) e % 2 == 0){ 
           e = *(int **) e;} 
    acc+=((int) e >> 1); 
 } 

safe pointer 

sequence pointer 

dynamic pointer 

Example 
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For	sequence	and	dynamic	pointers,	must	
keep	track	of	the	address	and	size	of	the	
pointed	area	for	run?me	bounds	checking		

•  Each	allocated	memory	area	is	called	a	home	(H),	
with	a	star?ng	address	h	and	a	size	

•  Valid	run?me	values	for	a	given	type:	
–  Integers:	||int||	=	N	
–  Safe	pointers:	||τ	ref	SAFE||	=	{	h+i	|	h	∈	H	and		
											0≤i<size(h)	and	(h=0	or	kind(h)=Typed(τ))	}	
–  Sequence	pointers:	||τ	ref	SEQ||	=	{<h,n>	|	h	∈	H	and		
																																									(h=0	or	kind(h)=Typed(τ))	}	
– Dynamic	pointers:	||DYNAMIC||	=	{<h,n>	|	h	∈	H	and		
																																									(h=0	or	kind(h)=Untyped)	}	
		

Modified	Pointer	RepresentaIon	

Safe	pointers	are	
integers,	same	as	

standard	C	
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RunIme	Memory	Safety	
•  Each	memory	home	(i.e.,	allocated	memory	area)	
has	typing	constraints	
– Either	contains	values	of	type	τ,	or	is	untyped	

•  If	a	memory	address	belong	to	a	home,	its	
contents	at	run?me	must	sa?sfy	the	home’s	
typing	constraints	
– ∀h	∈	H	{0}	∀i	∈	N			
			if	0≤i<size(h)	then		
			(kind(h)=Untyped	⇒	Memory[h+i]	∈	||DYNAMIC||	
and		

				kind(h)=Typed(τ)	⇒	Memory[h+i]	∈	||τ||)	
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RunIme	Checks	
•  Memory	accesses	

–  If	via	safe	pointer,	only	check	for	non-NULL	
–  If	via	sequence	or	dynamic	pointer,	also	bounds	check	

•  Typecasts	
–  From	sequence	pointers	to	safe	pointers	

•  This	requires	a	bounds	check!	
–  From	pointers	to	integers	
–  From	integers	to	sequence	or	dynamic	pointers	

•  But	the	home	of	the	resul?ng	pointer	is	NULL	and	it	cannot	
be	dereferenced;	this	breaks	C	programs	that	cast	pointers	
into	integers	and	back	into	pointers	
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•  Manual:	programmer	annotates	code	
•  Beaer:	type	inference	

– Analyze	the	source	code	to	find	as	many	safe	and	
sequence	pointers	as	possible	

•  This	is	done	by	resolving	a	set	of	constraints	
–  If	p	is	used	in	pointer	arithme?c,	p	is	not	safe	
–  If	p1	is	cast	to	p2	

•  Either	they	are	of	the	same	kind,	or	p1	is	a	sequence	
pointer	and	p2	is	a	safe	pointer	

•  Pointed	areas	must	be	of	same	type,	unless	both	are	
dynamic	

–  If	p1	points	to	p2	and	p1	is	dynamic,	then	p2	dynamic.	
•  …etc.	

Inferring	Pointer	Types	
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Various	CCured	Issues	
•  Conver?ng	a	pointer	to	an	integer	and	back	to	a	
pointer	no	longer	works	
–  Some?mes	fixed	by	forcing	the	pointer	to	be	dynamic	

•  Modified	pointer	representa?on	
– Not	interoperable	with	libraries	that	are	not	
recompiled	using	CCured	(use	wrappers)	

– Breaks	sizeof()	on	pointer	types	
•  If	program	stores	addresses	of	stack	variables	in	
memory,	these	variables	must	be	moved	to	heap	

•  Garbage	collec?on	instead	of	explicit	
dealloca?on	
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Performance	
•  Most	pointers	in	benchmark	programs	were	inferred	
safe,	performance	penalty	under	90%	
–  Less	than	20%	in	half	the	cases	
– Minimal	slowdown	on	I/O-bound	applica?ons	

•  Linux	kernel	modules,	Apache	
–  If	all	pointers	were	made	dynamic,	then	6	to	20	?mes	
slower	(similar	to	a	pure	run?me-checks	approach)	

–  On	the	other	hand,	pure	run?me-checks	approach	does	
not	require	access	to	source	code	and	recompila?on	

•  Various	bugs	found	in	test	programs	
–  Array	bounds	viola?ons,	unini?alized	array	indices	
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ANNOTATIONS/CONTRACTS:	
PROVIDED	AND	INFERRED	
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C	String	StaIc	Verifier	
1.  “Contracts”	specify	procedure’s	pre-	and	

post-condi?ons,	poten?al	side	effects	
2.  Flow-insensi?ve	“points-to”	pointer	

analysis	
3.  Transform	C	procedure	into	a	procedure	

over	integers;	apply	integer	analysis	to	
find	variable	constraints	

– Any	poten?al	buffer	overflow	in	the	original	
program	violates	an	“assert”	statement	in	this	
integer	program		

[Dor, Rodeh, Sagiv] 
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char* strcpy(char* dst, char *src) 
  requires 
 

 modifies 
  ensures 

string(src) ∧ 
alloc(dst) > len(src)  

dst.strlen, dst.is_nullt 

  len(dst) = = pre@len(src) ∧  
  return = = pre@dst   

Example:	strcpy	Contract	
[Dor, Rodeh, Sagiv] 
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#define BUFSIZ 1024 
#include	"insert_long.h"			
char	buf[BUFSIZ];	
char	*	insert_long	(char	*cp)	{		
			char	temp[BUFSIZ];	
			int	i;	
			for	(i=0;	&buf[i]	<	cp;	++i){		
						temp[i]	=	buf[i];			
						}	
				strcpy	(&temp[i],"(long)");	
				strcpy	(&temp[i	+	6],	cp);		
				strcpy	(buf,	temp);		
				return	cp	+	6;			
}	

Example: insert_long() 

cp	

buf	

(long)	temp	

cp	

buf	

(long)	temp	

[Dor, Rodeh, Sagiv] 
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#define BUFSIZ 1024 
#include	"insert_long.h"			
char	buf[BUFSIZ];	
char	*	insert_long	(char	*cp)	{		
			char	temp[BUFSIZ];	
			int	i;	
			for	(i=0;	&buf[i]	<	cp;	++i){		
						temp[i]	=	buf[i];			
						}	
				strcpy	(&temp[i],"(long)");	
				strcpy	(&temp[i	+	6],	cp);		
				strcpy	(buf,	temp);		
				return	cp	+	6;			
}	

insert_long() Contract 

char * insert_long(char *cp)  
    requires  string(cp)  ∧ 

       buf ≤ cp < buf  + BUFSIZ  
   modifies  cp.strlen  
   ensures 
      cp.strlen = = pre[cp.strlen] + 6 

 ∧  
      return_value = = cp + 6 ;  

 

[Dor, Rodeh, Sagiv] 
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C2IP:	C	to	Integer	Program	
•  Integer	variables	only	
•  No	func?on	calls	
•  Non-determinis?c	
•  Constraint	variables	
•  Update	statements	
•  Assert	statements	

– Any	string	manipula?on	error	in	the	original	C	
program	is	guaranteed	to	violate	an	asser?on	
in	integer	program	
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TransformaIons	for	C	Statements	

For pointer p, 
lp  -  its location 
rp  -  location it points to 
(if several possibilities, use  
nondeterministic assignment) 

For abstract location l, 
l.val  -  potential values stored in 
       the locations represented by l 
l.offset  -  potential values of 
       the pointers represented by l 
l.aSize  -  allocation size 
l.is_nullt  -  null-terminated? 
l.len  -  length of the string 

[Dor, Rodeh, Sagiv] 
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Correctness	AsserIons	

All dereferenced pointers 
point to valid locations 

Results of pointer arithmetic 
are valid 

[Dor, Rodeh, Sagiv] 
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Example 

p = q + 5; 

Assert statement: 

Update statement: p.offset = q.offset + 5; 

assert (  
5 <= q.alloc &&  
(!q.is_nullt || 5 <= q.len) ) 

[Dor, Rodeh, Sagiv] 
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Nondeterminism 

*p		=	0;	

if (…) { 
 aloc1.len = p.offset; 
 aloc1.is_nullt = true; } 

else { 
 alloc5.len = p.offset; 
 alloc5.is_nullt = true; } 

p	
aloc1	

aloc5	

[Dor, Rodeh, Sagiv] 
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Integer	Analysis	
•  Interval	analysis	not	enough	

–  Loses	rela?onships	between	variables	
•  Infer	variable	constraints	using	abstract	domain	
of	polyhedra	[Cousot	and	Halbwachs,	1978]	
– a1*	var1	+	a2*	var2	+	…	+	an*	varn	≤	b	

–  		

        y ≥ 1 
 x + y ≥ 3 
-x + y ≤1 

0						1					2					3																x		

0	
			
		1
			
		2
			
		3
			
			
			
			
y	
	

V	=	<(1,2)	(2,1)>	
R	=	<(1,0)	(1,1)>	

join 

[Dor, Rodeh, Sagiv] 
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#define BUFSIZ 1024 
#include	"insert_long.h"			
char	buf[BUFSIZ];	
char	*	insert_long	(char	*cp)	{		
			char	temp[BUFSIZ];	
			int	i;	
			for	(i=0;	&buf[i]	<	cp;	++i){		
						temp[i]	=	buf[i];			
						}	
				strcpy	(&temp[i],"(long)");	
				strcpy	(&temp[i	+	6],	cp);		
				strcpy	(buf,	temp);		
				return	cp	+	6;			
}	

insert_long()	Redux	

cp	

buf	

(long)	temp	

cp	

buf	

(long)	temp	

[Dor, Rodeh, Sagiv] 
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Integer	Analysis	of	insert_long()	

cp	

buf	

(long)	temp	

assert(0	≤	i	<		stemp.msize	-	6);		//	strcpy(&temp[i],"(long)");	

buf.offset	=		0	
temp.offset	=	0		
0	≤	cp.offset		=	i	
i	≤		sbuf.len	<	s	buf.msize			
sbuf.msize	=	1024	
stemp.msize=	1024	

Potential violation  
when cp.offset  ≥ 1018 

cp.offset		≥	1018	

[Dor, Rodeh, Sagiv] 
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FOR	THURSDAY:	MODULAR	
ANNOTATION-BASED	OVERFLOW	AT	
MICROSOFT	
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