
Homework 5: Axiomatic semantics and Hoare-style
verification

15-819O: Program Analysis
Claire Le Goues

clegoues@cs.cmu.edu

Due: Tuesday, March 29, 2016 (11:59 pm) 80 points total, 12 points extra credit

Assignment Objectives:
• Demonstrate understanding of verification condition generation and use in verifying programs.
• Write new Hoare Rules/axiomatic semantics for a particular language.
• Reason about soundness/completeness of a system for axiomatic semantics.
To submit, turn in a PDF file electronically containing your responses via Blackboard, under
Homework 5. Note that a .docx is not a .pdf. Name your file andrewid-hw5.pdf. Include your
name at the top of the PDF. Proper submission is worth two points.

Question 1, VCGen, (20 points). Consider the following rules for VCGen. We saw the first two in
class, the third is a new proposed rule for let:

V C(S1;S2, B) = V C(S1, V C(S2, B))
V C(x := e,B) = [e/x]B
V C(let x = e in S,B) = [e/x]V C(S,B)

The rule for let is incorrect. Explain why (English prose is fine; see next question for extra credit
for a formal answer), and then give a correct rule for let.

Extra Credit Question, Let rule soundness, (12 points). Given {A} S {B}, we desire that A ⇒
V C(c,B) ⇒ WP (c,B). We say that our VC rules are sound if � {V C(S,B)} S {B}. Demonstrate
the unsoundness of the buggy let rule above by giving/showing the following six things:

1. a statement S and
2. a post-condition B and
3. a state E, all such that
4. E � V C(S,B) and
5. 〈S,E〉 ⇓ E′ but
6. E 2 B

Question 2, Do-while, (15 points). Write a sound/complete Hoare rule for do S while b. The
statement has the standard semantics (i.e., S is executed at least once, before b is tested). You do
not need to formally prove soundness/completeness, but make sure the rule makes sense.

Question 3, Loop proof obligations, (18 points). Consider the following program:

1



{N > 0 }
i := 0;
{ i <= N }
while (i < N) do

{ i <= N }
i := i + 1
{ i <= N }

{i=N}

Assuming the loop invariant i ≤ N , write the proof obligations for the while loop. Don’t
solve/prove them, just write them out. The form of your answer should be three mathematical
implications, one for each of the following proof obligations:
• Invariant is initially true:
• Invariant is preserved by the loop body:
• Invariant and exit condition imply postcondition:

Question 4, Soundness/Completeness, (25 points). Consider the following three Hoare rules:

` {X} S {b⇒ X ∧ ¬b⇒ Y }
` {b⇒ X ∧ ¬b⇒ Y } while b do S {Y } rule1

` {X ∧ b} S {X}
` {X} while b do S {X} rule2

` {X} S {X}
{X} while b d S {X ∧ ¬b} rule3

Recall that a system of axiomatic semantics is sound if everything we can prove is also true: if
` {A} S {B} then � {A} S {B}. A system of axiomatic semantics is complete if we can prove all
true things: if � {A} S {B} then ` {A} S {B}. All three of the rules above are sound, but only one
is complete.

Part (a): Identify the two incomplete rules.

Part (b): Choose one of the identified incomplete rules; indicate which one you have chosen. Then
give/show example A, B, E, S, and E′ such that 〈S,E〉 ⇓ E′ and both E � A and and E′ � B, but
it is not possible given the rule to prove ` {A} S {B}.

(Educational) note: An incomplete system cannot prove all possible properties or handle all possible
programs. Incompleteness in an axiomatic semantics or type system is typically not as dire as unsoundness.
Many research results that claim to work for the C language, for example, are actually incomplete because
they fail to address, say, setjmp/longjmp or bitfields. (Many of them are also unsound because they do not
correctly model various language features like unsafe casts, pointer arithmetic, or integer overflow.

2


