
MAP/REDUCE
Cloud	&	Cluster	Data	Management

1

Example:	Count	Word	Occurrences	 

• Problem:	Process	html	files	and	and	count	the	number	of	times	
words	occur	in	those	documents	

• Three	options	
– Write	a	program	

– Use	Map	Reduce	

– Use	a	database

2

• Count	word	occurrences	in	large	collection	of	documents	

• For	Starters:	Count	word	occurrences	in	two	files:	shoes.html,	
sweaters.html

3shoes.html sweaters.html

(red,	3)	
(shoes,	15)	
(sweater,	1)

(blue,	1)	
(shoes,	3)	
(sweater,	30)

Count	Word	Occurrences	–	Write	a	Program

CPU1 CPU2

• Count	word	occurrences	in	large	collection	of	documents	

• For	Starters:	Count	word	occurrences	in	two	files:	shoes.html,	
sweaters.html

4shoes.html sweaters.html

(red,	3)	
(shoes,	15)	
(sweater,	1)

(blue,	1)	
(shoes,	3)	
(sweater,	30)

Count	Word	Occurrences	–	Write	a	Program

CPU1

CPU3

(blue,	1)	
(red,	3)	
(shoes,	18)	
(sweater,	31)

Now	what	happens	
when	you	have	50,000	
files	and	1000	servers…
What	if	a	machine	
crashes?
Load	balancing?

CPU2

• Map:	
– Input:	(document	name,	document	contents)	pairs	

– Output:	(word,	“1”)	for	each	word	in	the	contents	

• Reduce:	
– Input:	(word,	[1,1,1,1])		(list	of	counts)	

– Output:	4		(sum	of	counts)

5

Count	Word	Occurrences	–	Map	Reduce

• Map:	
– Input:	(document	name,	document	contents)	pairs	

– Output:	(word,	“1”)	for	each	word	in	the	contents	

• Reduce:	
– Input:	(word,	[1,1,1,1])		(list	of	counts)	

– Output:	4		(sum	of	counts)

6

Count	Word	Occurrences	–	Map	Reduce

6shoes.html sweaters.html

(shoes,	1)	
(shoes,	1)	
(sweater,	1)	
(shoes,	1)	
…

(blue,	1)	
(shoes,	1)	
(sweater,	1)	
(sweater,	1)	
…

MAP1 MAP2

7

shoes.html sweaters.html

Count	Word	Occurrences	–	Map	Reduce

(shoes,	1)	
(shoes,	1)	
(sweater,	1)	
(red,	1)	
…

(blue,	1)	
(sweater,	1)	
(sweater,	1)	
(shoes,	1)	
…

MAP1 MAP2

(sweater,	31)	
(shoes,	18)

Now	what	happens	
when	you	have	50,000	
files	and	1000	servers…

REDUCE1 REDUCE2

(blue,	1)		
(red,		3)

• Map:	
– Input:	(document	name,	

document	contents)	pairs	

– Output:	(word,	“1”)	for	each	
word	in	the	contents	

• Reduce:	
– Input:	(word,	[1,1,1,1])		(list	of	

counts)	

– Output:	4		(sum	of	counts)

Count	Word	Occurrences	-	Database

8

SELECT	word,	count(*)	
FROM	words	
GROUP	BY	word

• Step	1:	Pick	schema	and	load	database	

• Step	2:	Query

(blue,	1)	
(red,	3)	
(shoes,	18)	
(sweater,	31)

CREATE	TABLE	words		
(docname	text,	word	text,	lineno	integer)	

COPY	words	FROM	shoes.csv	with	csv	
COPY	words	FROM	sweaters.csv	with	csv

(shoes.csv,	red,	23)	
(sweaters.csv,	blue,	3)	
(shoes.csv,	shoes,	29)	
(shoes.csv,	shoes,	76)	
….

STEP	1:

STEP	2:

Count	Word	Occurrences	-	Databases

• But,	now,	you	can	also	do…

9

SELECT	word,	count	(*)	
FROM	words	
WHERE	count	>	100	
GROUP	BY	word

SELECT	word,	count(*)	
FROM	words	
WHERE	word	LIKE	“s%”	
GROUP	BY	word

SELECT	MAX(lineno)	
FROM	words	
WHERE	word	=	‘shoes’

• And,	if	it’s	a	parallel	database,	the	scaling	and	parallelization	
will	all	be	handled	automatically…

SELECT	count(*)	
FROM	words	
WHERE	word	LIKE	“s%”

Count	Word	Occurrences	-	Observations	  

• Write	a	Program	
– Requires	high-level	of	programmer	ability	–	scalability	&	fault-tolerance	

must	be	incorporated	into	the	code	

– Limited	code	re-use	

• MapReduce	
– Requires	lower	level	of	programmer	ability	–	scalability	&	fault-tolerance	

handled	by	the	MapReduce	framework	

– Some	code	re-use	

• Database	
– Requires	load	phase	(and	schema)	

– Declarative	query	language	(SQL)	
• Query	language	is	powerful,	does	not	require	parallel	programming	skills	(but	
you	have	to	know	SQL)	

– Scalability	and	fault-tolerance	handled	by	(parallel)	database

10

MapReduce: A major step backwards

11

…

As both educators and researchers, we are amazed at the hype that the MapReduce proponents have
spread about how it represents a paradigm shift in the development of scalable, data-intensive
applications. MapReduce may be a good idea for writing certain types of general-purpose computations,
but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive applications

2. A sub-optimal implementation, in that it uses brute force instead of indexing

3. Not novel at all -- it represents a specific implementation of well known techniques developed
nearly 25 years ago

4. Missing most of the features that are routinely included in current DBMS

5. Incompatible with all of the tools DBMS users have come to depend on
….

https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html

https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html

Let’s	Look	at	Map	Reduce	…

• Background	and	Requirements	
– computations	are	conceptually	straightforward	

– input	data	is	(very)	large	

– distribution	over	hundreds	or	thousands	of	nodes	

– Had	implementations	of	hundreds	of	special-purpose	computations	
• inverted	indices,	number	pages	crawled	per	host,	most	frequent	queries	all	
executed	over	web	logs	

• Computations	simple,	but	parallelization	makes	things	complex…

12

Map	Reduce	-	Motivation

• Programming	model	for	processing	of	large	data	sets	
– abstraction	to	express	simple	computations	

– claim:	many	real-world	tasks	are	expressible	in	this	model	

– automatic	parallelization	and	scalability	(commodity	shared-nothing	
machines)	

– hide	details	of	parallelization,	data	distribution,	fault-tolerance,	and	
load-balancing	

– programmers	don’t	need	experience	in	parallel	programming…	

– re-execution	is	primary	mechanism	for	fault-tolerance

13

Programming	Model

• Inspired	by	primitives	from	functional	programming	languages	
such	as	Lisp,	Scheme,	and	Haskell	

• Input	and	output	are	sets	of	key/value	pairs	

• Programmer	specifies	two	functions	
– map (k1,v1) → list(k2,v2)	

– reduce	 (k2,list(v2)) → list(v2)	

• Key	and	value	domains	
– input	keys	and	values	are	drawn	from	a	different	domain	than	

intermediate	and	output	keys	and	values	

– intermediate	keys	and	values	are	drawn	from	the	same	domain	as	
output	keys	and	values

14

Map	Function

• User-defined	function	
– processes	input	key/value	pair	
– produces	a	set	of	intermediate	key/value	pairs	

• Map	function	I/O	
– input:	read	from	GFS	file	(chunk)	
– output:	written	to	intermediate	file	on	local	disk	

• Map/reduce	library	
– executes	map	function	
– groups	together	all	intermediate	values	with	the	same	key	
– “passes”	these	values	to	reduce	functions	

• Effect	of	map	function	
– processes	and	partitions	input	data	
– builds	distributed	map	(transparent	to	user)	
– similar	to	“group	by”	operation	in	SQL	(but	with	a	list	as	output)

15

Reduce	Function

• User-defined	function	
– accepts	one	intermediate	key	and	a	set	of	values	for	that	key	

– merges	these	values	together	to	form	a	(possibly)	smaller	set	

– typically,	zero	or	one	output	value	is	generated	per	invocation	

• Reduce	function	I/O	
– input:	read	from	intermediate	files	using	remote	reads	on	local	files	of	

corresponding	mapper	nodes	

– output:	each	reducer	writes	its	output	as	a	file	back	to	GFS	

• Effect	of	reduce	function	
– similar	to	aggregation	operation	in	SQL

16

Map	Reduce	Specification

• Names	input/output	files	

• Optional	tuning	parameters

17

Map/Reduce	Interaction

• Map	functions	create	a	user-defined	“index”	from	source	data	

• Reduce	functions	compute	grouped	aggregates	based	on	index	

• Flexible	framework	
– users	can	cast	raw	original	data	in	any	model	that	they	need	

– wide	range	of	tasks	can	be	expressed	in	this	simple	framework

18

Map	1

Map	2

Map	3

Reduce	1

Reduce	2

Reduce	3

Reduce	4

MapReduce	Example
map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in input_value:
 EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
 // key: word
 // values:
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

19

20

shoes.html sweaters.html

Count	Word	Occurrences	–	Map	Reduce

(shoes,	1)	
(shoes,	1)	
(sweater,	1)	
(red,	1)	
…

(blue,	1)	
(sweater,	1)	
(sweater,	1)	
(shoes,	1)	
…

MAP1 MAP2

(sweater,	31)	
(shoes,	18)

Now	what	happens	
when	you	have	50,000	
files	and	1000	servers…

REDUCE1 REDUCE2

(blue,	1)		
(red,		3)

• Map:	
– Input:	(document	name,	

document	contents)	pairs	

– Output:	(word,	“1”)	for	each	
word	in	the	contents	

• Reduce:	
– Input:	(word,	[1,1,1,1])		(list	of	

counts)	

– Output:	4		(sum	of	counts)

More	Examples

• Distributed	“grep”	
– goal:	find	positions	of	a	pattern	in	a	set	of	files	

– map:	(File,	String)	→	list(Integer,	String),	emits	a	<line#,	line>	pair	for	
every	line	that	matches	the	pattern	

– reduce:	identity	function	that	simply	outputs	intermediate	values	

• Count	of	URL	access	frequency	
– goal:	analyze	Web	logs	and	count	page	requests	

– map:	(URL,	String)	→ list(URL,	Integer),	emits	<URL,	1>	for	every	
occurrence	of	a	URL	

– reduce:	(URL,	list(Integer))	→ list(Integer),	sums	the	occurrences	of	each	
URL	

• Workload	of	first	example	is	in	map	function,	whereas	it	is	on	
the	reduce	in	the	second	example

21

More	Examples

• Reverse	Web-link	graph	
– goal:	find	which	source	pages	link	to	a	target	page	

– map:	(URL,	CLOB)	→	list(URL,	URL),	parses	the	page	content	and	emits	
one	<target,	source>	pair	for	every	target	URL	found	in	the	source	page	

– reduce:	(URL,	list(URL))	→	list(URL),	concatenates	all	lists	for	one	source	
URL	

• Term-vector	per	host	
– goal:	for	each	host,	construct	its	term	vector	as	a	list	of	<word,	

frequency>	pairs	

– map:	(URL,	CLOB)	→	list(String,	List),	parses	the	page	content	(CLOB)	
and	emits	a	<hostname,	term	vector>	pair	for	each	document	

– reduce:	(String,	list(List<String,	Integer>))	→	list(List<String,	Integer>),	
combines	all	per-document	term	vectors	and	emits	final	<hostname,	
term	vector>	pairs

22

More	Examples

• Inverted	index	
– goal:	create	an	index	structure	that	maps	search	terms	(words)	to	

document	identifiers	(URLs)	

– map:	(URL,	CLOB)	→	list(String,	URL),	parses	document	content	and	
emits	a	sequence	of	<word,	document	id>	pairs	

– reduce:	(String,	list(URL))	→	list(URL),	accepts	all	pairs	for	a	given	word,	
and	sorts	and	combines	the	corresponding	document	ids	

• Distributed	sort	
– goal:	sort	“records”	according	to	a	user-defined	key	

– map:	(?	,	Object)	→	list(Key,	Record),	extracts	the	key	from	each	
“record”	and	emits	<key,	record>	pairs	

– reduce:	emits	all	pairs	unchanged	

– Map/reduce	guarantees	that	pairs	in	each	partition	are	processed	
ordered	by	key,	but	still	requires	clever	partitioning	function	to	work!

23

Discussion	Question

Pick	an	online	application	and	a	query	and	think	about	how	you	
would	implement	in	Map	Reduce	

Example	Applications:	Twitter,	Amazon,	Instagram,,	Snapchat,	gmail,	FaceBook,	
Minecraft,	Healthcare.gov,	Dropbox,	Flickr,	Instagram,	Ebay,	Yelp,	TripAdvisor,	Zillow,	
E*TRADE,	iTunes,	online	banking	

Example	Queries:	Twitter:	count	tweets	about	a	hashtag;	Instagram:	top	10	hashtags	in	
the	past	day;	Amazon:	average	order	price	per	customer;	Facebook:	find	all	of	your	
friends	

Map	Reduce:	

	 Map	Function:	

	 	
	 Reduce	Function:

24

Implementation	Architecture

• Based	on	the	“Google	computing	environment”	
– same	assumptions	and	properties	as	GFS	

– builds	on	top	of	GFS	

• Architecture	
– one	master,	many	workers	

– users	submit	jobs	consisting	of	a	set	of	tasks	to	a	scheduling	system	

– tasks	are	mapped	to	available	workers	within	the	cluster	by	master

25

Let’s	Remember	HW	Architectures…

MEMORY

Easy/cheap	to	build	(commodity	hw)

Shared	Disk Shared	Memory

CPU CPU CPUCPU CPU CPU

MEMORY MEMORY

DISK DISK

MEMORY

DISK

MEMORY

DISK

Shared	Nothing

Expensive	to	build	(custom	hw)	

Difficult	to	program Easier	to	program

Implementation	Execution

• Execution	overview	
– map	invocations	are	distributed	across	multiple	machines	by	

automatically	partitioning	the	input	data	into	a	set	of	M	splits	

– input	splits	can	be	processed	in	parallel	

– reduce	invocations	are	distributed	by	partitioning	the	intermediate	key	
space	into	R	pieces	using	a	partitioning	function,	e.g.	“hash(key)	mod	R”

27

Execution	Overview

28
Figure	Credit:	“MapReduce:	Simplified	Data	Processing	on	Large	Clusters”	by	J.	Dean	and	S.	Ghemawat,	2004

Execution	Overview

1. Map/reduce	library	splits	input	files	into	M	pieces	and	then	starts	
copies	of	the	program	on	a	cluster	of	machines	

2. One	copy	is	the	master,	the	rest	are	workers;	master	assigns	M	map	
and	R	reduce	tasks	to	idle	workers	

3. Map	worker	reads	its	input	split,	parses	out	key/value	pairs	and	
passes	them	to	user-defined	map	function	

4. Buffered	pairs	are	written	to	local	disk,	partitioned	into	R	regions;	
location	of	pairs	passed	back	to	master	

5. Reduce	worker	is	notified	by	master	with	pair	locations;	uses	RPC	to	
read	intermediate	data	from	local	disk	of	map	workers	and	sorts	it	
by	intermediate	key	to	group	tuples	by	key	

6. Reduce	worker	iterates	over	sorted	data	and	for	each	unique	key,	it	
invokes	user-defined	reduce	function;	result	appended	to	reduce	
partition	

7. Master	wakes	up	user	program	after	all	map	and	reduce	tasks	have	
been	completed

29

Master	Data	Structures

• Information	about	all	map	and	reduce	task	
– worker	state:	idle,	in-progress,	or	completed	

– identity	of	the	worker	machine	(for	non-idle	tasks)	

• Intermediate	file	regions	
– propagates	intermediate	file	locations	from	map	to	reduce	tasks	

– stores	locations	and	sizes	of	the	R	intermediate	file	regions	produced	by	
each	map	task	

– updates	to	this	location	and	size	information	are	received	as	map	tasks	
are	completed	

– information	pushed	incrementally	to	workers	that	have	in-progress	
reduce	tasks

30

Fault	Tolerance

• Worker	failure	
– master	pings	workers	periodically;	assumes	failure	if	no	response	

– completed/in-progress	map	and	in-progress	reduce	tasks	on	failed	
worker	are	rescheduled	on	a	different	worker	node	
• output	of	map	is	stored	locally,	reduce	output	is	stored	in	GFS	

– resilient	to	large-scale	worker	failures	

• Master	failure	
– master	fails	->	restart	map-reduce	operation	
– “given	that	there	is	only	a	single	master,	failure	is	unlikely”

31

Fault	Tolerance

• Failure	semantics	
– if	user-defined	functions	are	deterministic,	execution	with	faults	

produces	the	same	result	as	execution	without	faults	

– rely	on	atomic	commits	of	map	and	reduce	tasks	

– map	&	reduce	write	to	private	temp	files	

– map	produces	R	files,	reduce	produces	one	file	

– map	completes,	sends	list	of	files	to	Master	(if	task	already	completed,	
message	ignored),	Master	records	names	of	data	files	

– reduce	completes,	renames	temp	file	to	final	output	file	–	conflicts	
resolved	by	atomic	rename	operation

32

More	Implementation	Aspects

• Locality	
– network	bandwidth	is	scarce	resource	
– move	computation	close	to	data	
– master	takes	GFS	metadata	into	consideration	(location	of	replicas)	
– vast	majority	of	input	data	is	ready	locally	

• Task	granularity	
– M	map	tasks,	R	reduce	tasks	
– M	and	R	much	larger	than	number	of	worker	machines	(dynamic	load	

balancing,	speeds	up	recovery)	
– Sizes	of	M	and	R	limited	by	

• master	makes	O(M	+	R)	scheduling	decisions	
• master	stores	O(M	*	R)	states	in	memory	(constant	factors	small)	

– R	constrained	by	users	(produces	R	files)	
– M	selected	so	each	task	uses	16MB-64MB	(chunk	size)	of	input	data	
– R	small	multiple	of	#	of	worker	machines	(M=200,000,	R=5,000,	2,000	

machines)
33

More	Implementation	Aspects

• Backup	Tasks	
– “stragglers”	are	a	common	cause	for	suboptimal	performance	

• Bad	disk,	overloaded	machine,	no	processor	cache	

– as	a	map/reduce	computation	comes	close	to	completion,	master	
assigns	the	same	task	to	multiple	workers	

– Significantly	reduces	time	to	complete,	at	the	cost	of	a	few	percent	
execution	time	increase

34

35

shoes.html sweaters.html

Count	Word	Occurrences	–	Map	Reduce

(shoes,	1)	
(shoes,	1)	
(sweater,	1)	
(red,	1)	
…

(blue,	1)	
(sweater,	1)	
(sweater,	1)	
(shoes,	1)	
…

MAP1 MAP2

(sweater,	31)	
(shoes,	18)

Now	what	happens	
when	you	have	50,000	
files	and	1000	servers…

REDUCE1 REDUCE2

(blue,	1)		
(red,		3)

• Map:	
– Input:	(document	name,	

document	contents)	pairs	

– Output:	(word,	“1”)	for	each	
word	in	the	contents	

• Reduce:	
– Input:	(word,	[1,1,1,1])		(list	of	

counts)	

– Output:	4		(sum	of	counts)

Map	Reduce	–	Key	Features

• Single	Master		
– tracks	mapper	and	reducer	status	and	intermediate	file	locations	

• Fault	Tolerance	–	monitor	workers	and	restart	jobs	(also	used	
for	stragglers)	

• Locality	–	move	computation	to	disk	where	possible	

• Task	granularity	
– M	selected	so	each	task	uses	16MB-64MB	(chunk	size)	of	input	data	

– R	selected	based	on	user	needs	

– R	small	multiple	of	#	of	worker	machines	(M=200,000,	R=5,000,	2,000	
machines)

36

Refinements

• Partitioning	function	
– default	function	can	be	replaced	by	user;	“application-specific”	

partitioning	

• Ordering	guarantees	
– within	a	given	partition,	intermediate	key/value	pairs	are	processed	in	

increasing	key	order	

• Combiner	function	
– Effectively:	partially	apply	the	reducer	at	the	mapper		

– Addresses	significant	key	repetitions	(zipf	distribution	<	the,	1>)	

• Input	and	output	types	
– Default	input	reader	-	key:	offset	in	file,	value:	contents	of	line	
– user	can	define	their	own	“readers”	and	“writers”

37

Refinements

• Skipping	bad	records	(a.k.a.	dealing	with	bugs	in	the	code)	
– Skip	records	on	which	tasks	have	failed	many	times	

• Status	Information		
– Progress	&	debug	info	provided	to	user	over	HTTP		

• Counters	(good	for	sanity	checking)	
– counter	facility	to	count	occurrences	of	various	events	(workers	count,	

send	to	master)

38

39

shoes.html sweaters.html

Count	Word	Occurrences	–	Map	Reduce

(shoes,	1)	
(shoes,	1)	
(sweater,	1)	
(red,	1)	
…

(blue,	1)	
(sweater,	1)	
(sweater,	1)	
(shoes,	1)	
…

MAP1 MAP2

(sweater,	31)	
(shoes,	18)

Now	what	happens	
when	you	have	50,000	
files	and	1000	servers…

REDUCE1 REDUCE2

(blue,	1)		
(red,		3)

• Map:	
– Input:	(document	name,	

document	contents)	pairs	

– Output:	(word,	“1”)	for	each	
word	in	the	contents	

• Reduce:	
– Input:	(word,	[1,1,1,1])		(list	of	

counts)	

– Output:	4		(sum	of	counts)

Performance

40

• Tasks:	Grep	&	Sort	over	1010	100-byte	records	(~1TB	data)	

• Grep	–	extracts	small	amount	of	data	from	large	data	set	

• Sort	–	shuffles	data	from	one	representation	to	another	

• Cluster	
– 1800	machines	

• 2GHz	Intel	Xeon,	Hyperthreading	enabled,	4GB	memory	(1-1.5GB	for	other	
tasks)	

– Weekend	afternoon	(mostly	idle	disks	&	network)

Grep	Set-up

• Scans	through	1010	100-byte	records	

• Relatively	rare	three-character	pattern	(pattern	occurs	in	
92,337	records).		

• The	input	is	split	into	approximately	64MB	pieces	(M	=	15000)	

• Entire	output	is	placed	in	one	file	(R	=	1).	

41

Performance	Experiments	-	Grep

42
Figure	Credit:	“MapReduce:	Simplified	Data	Processing	on	Large	Clusters”	by	J.	Dean	and	S.	Ghemawat,	2004

• Shows	progress	of	computation	over	time	
• Rate	of	input	data	is	scanning	peaks	at	>	30	GB/s		(1764	workers)	

• Computation	takes	~150	seconds	-	includes	~60sec	of	startup	
overhead	

• Propagation	of	the	program	to	all	worker	machines	
• Interaction	with	GFS	–	open	1000	input	files,	get	info	for	locality	

Performance	Setup	-	Sort

43

• Sort	1010	100-byte	records	(~1TB	data)	
– 3-line	map	function	extracts	a	10-byte	sorting	key	

– Reduce	is	the	identity	function	(built-in)	

– <	50	lines	of	user	code	

– 64MB	input	data	pieces,	M	=	15,000	

– R	=	4,000	(partition	on	initial	bytes	of	key)	
• Partitioning	function	knows	distribution	of	keys	

– Output	is	2-way	replicated	(writes	~2TB)

Performance	Experiments	-	Sort

44
Figure	Credit:	“MapReduce:	Simplified	Data	Processing	on	Large	Clusters”	by	J.	Dean	and	S.	Ghemawat,	2004

Rate	at	which	input	data	is	read

Rate	at	which	data	is	sent	over	network	
from	Map	tasks	->	reduce	tasks

Rate	at	which	sorted	data	is	written	to	
final	output	files

Performance	Experiments	-	Sort

45
Figure	Credit:	“MapReduce:	Simplified	Data	Processing	on	Large	Clusters”	by	J.	Dean	and	S.	Ghemawat,	2004

Rate	peaks	at	13GB/sec	(Grep	was	30	GB/sec)

*	Shuffling	starts	as	soon	as	the	first	map	task	completes	
•	First	hump	in	the	graph	is	for	first	batch	of	~1700	reduce	
tasks	(1700	machines,	at	most	one	reduce	task	at	a	time).		
•	At	300	sec,	some	of	first	batch	of	reduce	tasks	finish;	start	
shuffling	data	for	remaining	reduce	tasks	

Note	delay	between	shuffling	and	start	of	
writing	(machines	are	sorting)

Map	tasks	spend	half	of	their	time	and	I/O	
bandwidth	writing	intermediate	results

Sort	-	Comments

• Input	rate	is	higher	than	the	shuffle	rate	and	the	output	rate	
because	of	locality	optimization	
– Input	data	is	read	mostly	locally	

• Shuffle	rate	is	higher	than	the	output	rate	because	the	output	
phase	writes	two	copies	of	the	sorted	data	

• Two	replicas	because	that	replication	is	the	mechanism	for	
reliability	and	availability

46

Effect	of	Backup	Tasks

47
Figure	Credit:	“MapReduce:	Simplified	Data	Processing	on	Large	Clusters”	by	J.	Dean	and	S.	Ghemawat,	2004

•With	no	backup	tasks,	total	execution	
takes	much	longer,	but	shape	of	graphs	is	
the	same	
•	At	960	seconds,	all	but	5	reduce	tasks	
are	done	(there	are	almost	4k)	

Machine	Failures

48
Figure	Credit:	“MapReduce:	Simplified	Data	Processing	on	Large	Clusters”	by	J.	Dean	and	S.	Ghemawat,	2004

200	tasks	killed	a	few	minutes	into	
computation

Computation	finishes	in	933	seconds	(5%	
increase	in	execution	time)

Experience

• Written	in	Feb	2003	
• Enhancements	in	Aug	2003	

– Locality	optimization	
– Dynamic	load	balancing	of	task	execution	

• Usage	
– Large-scale	machine	learning	
– Clustering	for	Google	News	
– Extraction	of	data	to	produce	reports	of	popular	queries	
– Extraction	of	web	page	properties	
– Large-scale	graph	computations	

• Successful	because:	
– “makes	it	possible	to	write	a	simple	program	and	run	it	efficiently	on	a	thousand	

machines	in	the	course	of	half	an	hour”	
– “allows	programmers	who	have	no	experience	with	distributed	and/or	parallel	

systems	to	exploit	large	amounts	of	resources	easily”

49

Experience	-	Statistics

50

Figure	Credit:	“MapReduce:	Simplified	Data	Processing	on	Large	Clusters”	by	J.	Dean	and	S.	Ghemawat,	2004

Experience	-	Indexing

• Rewrite	of	production	indices	for	Google	web	search	

• 20TB	raw	data	(2004)	

• Indexing	is	a	sequence	of	5-10	MapReduce	operations		
– was	ad-hoc	distributed	passes	in	prior	version	

• Benefits	
– Indexing	code	is	simpler,	smaller,	easier	to	understand	–	fault	tolerance,	

distribution	and	parallelization	hidden	in	MR	library	

– Keep	conceptually	unrelated	computation	separate	–	not	mixed	together	
to	avoid	multiple	passes	over	the	data	–	making	changes	is	easier	(few	
months	to	few	days)	

– Indexing	process	easier	to	operate:	machine	failures,	slow		machines,	
networking	hiccups	are	dealt	with	automatically	&	easy	to	add	new	
machines

51

References

• J.	Dean	and	S.	Ghemawat:	MapReduce:	Simplified	Data	
Processing	on	Large	Clusters.	Proc.	Symp.	on	Opearting	Systems	
Design	&	Implementation	(OSDI),	pp.	137-149,	2004.

52

