
BIGTABLE 
 

Cloud	&	Cluster	Data	Management

1



Bigtable	–	Motivation	&	Uses

• Store	structured	data	–	scale	to	large	size	
– Petabytes	on	commodity	servers	

• Goals:	
– Wide	applicability	

– Scalablity	

– High	performance	

– High	availability	

• Uses:		Web	indexing,	Google	Earth,	Google	Finance	
– Data	type	and	size:	URLs	vs.	Satellite	imagery	

– Throughput-oriented	batch	jobs	vs.	latency-sensitive	jobs	
• bulk	processing,	real-time	data	serving

2

Bigtable MapReduce

Google	File	
System



Bigtable	–	Key	Concepts

• Column	family	data	model	

• Dynamic	control	over	data	layout	and	format	

• Control	whether	to	serve	data	out	of	memory	vs.	disk	

• Data	is	uninterpreted	strings	(no	typing)	
• Partitioning:		
• Transactions:	single-row	only	
– But	rows	are	heavyweight

3

Bigtable MapReduce

Google	File	
System



Bigtable	-	Tables

• Bigtable	cluster	–	set	of	processes	that	runs	Bigtable	software	
– Each	process	serves	a	set	of	tables	

• Tables:	
– Sparse,	Distributed,	Persistent,	Multi-dimensional	Sorted	map	

• Three	Dimensions:		
– row:	string	

– column:	string		

– time:	int64	

• (row:string,	column:string,	time:int64)	->	(uninterpreted)	string

4

(row	key,	column	key,	
		timestamp)	->	cell



Bigtable	-	Rows
• Rows	–	kept	ordered	by	row	key	
– Choice	of	row	key	important	
• Select	row	key	to	get	good	locality	of	data	access	(i.e.	reverse	hostname)	

• Small	row	ranges	=>	small	#	machines	

– Rows	with	consecutive	keys	grouped	into	tablets	

– Partitioning	is	fixed	(in	contrast	with	RDBMS)	

– #	rows	in	a	table	is	unbounded	

• Tablets	are	unit	of	distribution	and	load	balancing	
• Row	is	unit	of	transactional	consistency	
– Row	read/writes	are	serializable	

– No	transactions	across	rows

5



Bigtable	-	Columns
• Columns	grouped	into	Column	Families	
– Data	stored	in	column	families	is	usually	of	the	same	type	(compressed	

together)	

– Number	of	column	families	intended	to	be	small	(unlimited	rows,	cols)	
• Keeps	shared	meta-data	small	

– Column	families	must	be	created	explicitly	

– Column	key	is	family:qualifier	

• Example	column	families:	
– language:_____														cell	contains:	language	id	

– anchor:	referring	site					cell	contains:	text	associated	with	link	

• Column	family	is	unit	of	access	control

6



7

7

Row	key

Column	familyColumn	key



Bigtable	-	Timestamps

• Multiple	version	of	the	data	in	a	cell	-	indexed	by	timestamp	

• Timestamps	assigned	implicitly	by	Bigtable	or	explicitly	by	
clients	

• Bigtable	stores	in	decreasing	timestamp	order	(most	recent	
version	read	first)	

• Garbage	collection	settings:	
– Keep	last	N	versions	

– Keep	last	7	days	of	data	

• Webtable	ex:	timestamps	are	times	pages	were	crawled

8

Why	might	you	chose	implicit	or	explicit	timestamps?

What	implicit	assumption	are	they	making?	



Bigtable	API

9

• Create	delete	tables	and	column	families	

• Change	cluster,	table	and	column	family	meta-data	

• Single-row	transactions	
– Atomic	read-modify-write	sequences	on	a	single	row	

• Does	not	support	transactions	across	row	keys



Bigtable	API	–	Row	Mutation	Example

10

“Irrelevant	details	were	elided	to	keep	the	example	short.”		



Bigtable	API	–	Scanner	Example

11

Could	restrict	the	scan		

-produce	only	anchors	whose	
columns	match	
anchor:*.cnn.com,	

-	produce	only	anchors	whose	
timestamps	fall	within	ten	days	
of	the	current	time	



Bigtable	API	–	More	details

12

• Create	delete	tables	and	column	families	

• Change	cluster,	table	and	column	family	meta-data	

• Single-row	transactions	
– Atomic	read-modify-write	sequences	on	a	single	row	

• Does	not	support	transactions	across	row	keys	
• Interface	for	batching	writes	across	row	keys	at	the	client	
• Execution	of	client-supplied	scripts	in	server	address	space	
(Sawzall)	
– Filtering,	summarization,	but	no	writes	into	Bigtable	

• Wrappers	written	so	Bigtable	can	be	an	input	source	and	
output	source	for	MapReduce	jobs



Bigtable	–	Building	Blocks

13

A	typical	set	of	processes	that	run	on	a	Google	machine.	A	machine	
typically	runs	many	jobs	from	many	different	users.	



Bigtable	–	Building	Blocks

• Shared	pool	of	machines	–	many	applications	

• Uses	Google	cluster	management	system	for	scheduling	jobs,	
managing	resources,	monitoring	machine	status,	dealing	with	
machine	failures	

• GFS	used	to	store	log	files	and	data	files	
– Files	are	replicated	with	GFS	

• SSTable	immutable-file	format	
– Persistent,	ordered	immutable	map	from	keys->values	

– Keys	and	values	are	arbitrary	byte	strings	

• Operations:	lookup	key	and	iterate	over	key/values	in	a	range	
• SSTable	contains	blocks	(64KB	in	size),	block	index	at	end	of	file	
– Block	index	always	stored	in	memory	–	lookup	is	one	disk	seek	

• SSTable	can	be	memory	mapped
14



Recall:	Bigtable	-	Rows
• Rows	–	kept	ordered	by	row	key	
– Choice	of	row	key	important	
• Select	row	key	to	get	good	locality	of	data	access	(i.e.	reverse	hostname)	

• Small	row	ranges	=>	small	#	machines	

– Rows	with	consecutive	keys	grouped	into	tablets	

– Partitioning	is	fixed	(in	contrast	with	RDBMS)	

– #	rows	in	a	table	is	unbounded	

• Tablets	are	unit	of	distribution	and	load	balancing	
• Row	is	unit	of	transactional	consistency	
– Row	read/writes	are	serializable	

– No	transactions	across	rows

15



Discussion	Question

• Pick	your	favorite	application.	How	does	the	single	row	
transaction	work	for	your	application?	
– Areas	in	the	application	where	this	transaction	model	works	well?	

– Areas	in	the	application	where	this	transaction	model	does	not	work	
well?	

16



Bigtable	-	Implementation

• Three	components	
– Library	linked	into	clients	
– One	master	server	
– Tablet	servers	(dynamically	removed	or	added)	

• Master	Duties:	
– Assigns	tablets	to	Tablet	Servers	
– Detects	addition	&	expiration	of	tablet	servers	
– Load	Balancing	
– Garbage	collection	of	GFS	files	
– Schema	changes	(table	&	column	family	additions	and	deletions)	

• Client	
– Communicates	with	Tablet	Servers	for	data	
– Clients	cache	Tablet	Server	location	information	
– Most	clients	don’t	communicate	with	the	master

17

What	was	a	tablet	again?



Bigtable	-	Implementation

18

Client Master

Tablet	Server

Tablet	Server

Tablet	Server

10-1000	tablets	
per	tablet	
server

Bigtable	Client	
Library	-	Includes	
cache	of	tablet	
locations

Tablet	location	
requests	and	
responses

Read/write	
data	

tablet	servers	
can	be	
dynamically	
added	or	
removed

Master:	
•assigns	tablets	to	tablet	servers		
•detects	new	and	expired	tablet	servers	
•balances	tablet-server	load	
•garbage	collection	of	GFS	files	
•schema	changes	(i.e.	column	family	creations)



Bigtable	–	Tablets

• Table	consists	of	a	set	of	tablets	
• Each	tablet	contains	all	of	the	data	associated	with	a	row	range	
(range	partitioning	on	row	key)	

• Table	automatically	split	into	multiple	tablets	–	each	tablet	
about	1GB	in	size	

• Tablet	cannot	be	split	in	the	middle	of	the	row	–	row	should	be	
<	few	hundred	GB	

19



Tablet	Location

20



What	is	Chubby?

• A	highly-available	and	persistent	distributed	lock	service	
• Uses	5	active	replicas	–	one	is	the	master	

• Replicas	are	consistent	in	the	face	of	failure	
• Provides	a	namespace	that	consists	of	directories	and	small	files	

• Each	directory	or	file	can	be	used	as	a	lock	
– Reads	and	writes	to	a	file	are	atomic	

• Chubby	client	provides	consistent	caching	of	chubby	files

21



Tablet	Location

• Location	tree	is	like	B+	tree	
• Chubby	stores	the	location	of	the	root	tablet	
– Root	tablet	–	stores	locations	of	tablets	of	a	special	METADATA	table	

• METADATA	tablets	contains	locations	of	user	tablets	

• Root	is	never	split	
– Hierarchy	is	always	3	levels	

– Up	to	261	bytes	with	128MB	Metadata	Tablets	(234	tablets)	

• METADATA	table/tablets	store	location	and	a	rowkey	–	tableid	
and	end	row	

• Each	METADATA	row	~1k

22



Tablet	Location

23



Client	-	Tablet	Location

• Client	traverses	hierarchy	to	locate	tablets,	caches	locations	
• Empty	/	stale	cache	
– Moves	up	in	hierarchy	if	information	is	incorrect	or	not	known	(like	B+	

tree)	

– Empty	client	cache	can	cause	3	round	trips	to	master	+	1	read	from	
Chubby	

– Stale	client	cache	–	6	round	trips	+	1	read	from	Chubby	
• Stale	cache	entries	discovered	on	misses	

• Client	also	uses	prefetching	to	limit	round	trips	to	master	

• Metadata	tables	also	store	logging	info	(for	debugging	and	
performance	analysis)

24

Notice	the	tradeoffs	….



Tablet	Assignment

• Tablet	assigned	to	at	most	one	tablet	server	

• Master	keeps	track	of	live	tablet	servers	and	assignment	of	
tablets	to	tablet	servers	

• Chubby	used	to	keep	track	of	tablet	servers	
– TS	starts	–	creates	and	acquires	exclusive	lock	on	file	in	specific	Chubby	

directory	(servers	directory)	

– Master	monitors	this	directory	

– Tablet	stops	serving	if	it	loses	its	exclusive	lock	(i.e.	network	partition	
causes	loss	of	chubby	session)	

• Master	periodically	pings	tablet	servers	to	make	sure	they	still	
have	their	locks

25



Tablet	Representation

26



Tablet	Serving	–	General	Features

• Persistent	state	of	tablet	stored	in	GFS	
• Updates	written	to	a	commit	log	that	stores	redo	records	
• Recently-committed	updates	stored	in	memtable	
• Copy	on	write	for	updates	
• Redo	after	crash:	
– Read	metadata	from	METADATA	table	
• SSTables	&	set	of	redo	points	

– Read	indices	of	SSTables	into	memory	&	reconstruct	memtable	by	
redoing	updates	since	last	redo	point	(checkpoint)	

• Tablet	servers	handle	tablet	splits,	other	changes	handled	by	
master	(table	created,	tablets	merged)	
– TS	commits	split	–	recording	new	info	in	metadata	table,	notifies	master	
– If	notification	fails,	split	discovered	when	a	TS	goes	to	load	the	tablet	

(file	will	contain	only	a	portion	of	the	tablet)

27

No	undo?	….



Tablet	Serving	–	Writes	&	Reads

• Write	operation		
– Check	for	well-formed		

– Check	for	authorization	(chubby	file	–	usually	hit	on	chubby	client	cache)	
(remember	perms	are	at	column	family	level)	

– Valid	mutation	written	to	commit	log	(group	commit)	

– After	commit,	contents	inserted	into	memtable	

• Reads	
– Check	for	well-formed	

– Check	for	authorization	

– Read	operation	executed	on	a	merged	view	of	SSTables	and	the	
memtable	(both	sorted)

28



Compactions
• Memtable	increases	in	size	with	write	operations	
– At	threshold	–	minor	compaction	

• 	memtable	frozen	
• new	memtable	created	

• frozen	memtable	converted	to	an	SSTable	and	written	to	GFS	

– Goals:	
• Shrinks	memory	usage	of	memtable	

• Reduces	amount	of	data	that	has	to	be	read	from	the	commit	log	if	server	dies	

• Merging	compaction	
– Reads	SSTables	and	memtable	and	outputs	a	SSTable	

– Run	in	background	

– Discard	memtable	and	SSTable	when	done	

• Major	compaction	–	leaves	only	one	SSTable	
– Non-major	compactions	can	leave	deletion	entries	and	deleted	data	

– Major	compaction	leaves	no	deleted	data	

– Major	compactions	done	periodically	on	all	tables
29



Bigtable	Schemas	-	Chubby

• Schemas	stored	in	Chubby	
• Recall:	Chubby	provides	
– Atomic	whole-file	writes	
– Consistent	caching	

• Chubby	client	sends	update	to	Chubby	master,	ACL	is	checked	
• Master	installs	new	schema	by	(atomically)	writing	new	schema	
file	

• Tablet	servers	get	schema	by	reading	appropriate	file	from	
Chubby	
– Usually	a	hit	on	the	Chubby	cache	
– File	is	up-to-date	due	to	consistent	caching	

• Comment:	note	impact	of	having	only	column	families	at	
schema	level

30



Bigtable	-	Refinements

• Goal	of	refinements:	performance,	availability,	reliability	
• Locality	groups	
– Column	families	assigned	to	client-defined	locality	group	
– SSTable	generated	for	each	locality	group	in	each	tablet	(vertical	

partitioning)	
– Segregate	column	families	that	are	not	typically	accessed	together	

• Ex:	locality	groups	for	Webtable	
– page	meta-data	(language,	checksums)		
– page	contents	

• User	wanting	meta-data	does	not	need	to	read	page	contents	
• Locality	groups	can	be	declared	to	be	in-memory	
– Good	for	small	pieces	of	data	that	are	accessed	frequently	
– Note:	SSTables	immutable	

• Clients	control	if	SSTables	for	a	locality	group	are	compressed	
– Compress	page	contents	in	Webtable	example

31



Bigtable-Caching	/	Commit	Log

• Scan	Cache	
– High-level	cache	that	caches	key-value	pairs	

– Useful	for	applications	that	read	the	same	data	repeatedly	

• Block	Cache	
– Lower-level	cache,	caches	SSTable	blocks	

– Useful	for	applications	that	read	data	that	is	close	to	the	data	they	
recently	read	(sequential	read,	random	reads)	

• Commit	Log	
– If	commit	logs	were	separate	files,	lots	of	disk	seeks	for	writes	

– One	commit	log	per	tablet	server	–	good	performance	during	normal	
operation,	but	complicates	recovery	
• When	TS	crashes,	its	tablets	are	split	among	many	other	tablet	servers	–	all	of	
which	now	need	the	commit	log…

32



Performance

• N	tablet	servers	–	scale	as	N	varies	
• Same	number	of	client	servers	as	tablet	servers	
– Clients	are	not	a	bottleneck	

• R	–	rows	in	test	–	chosen	to	read/write	approx	1GB	of	data	per	
tablet	server	

• Sequential	write		
– partitioned	into	10N	equal-sized	ranges,	assigned	to	N	clients	
– Wrote	a	single	string	under	each	row	key	(uncompressible)	

• Random	write	
– Same	as	sequential	except	row	key	is	hashed	modulo	R	to	spread	load	

uniformly	

• Sequential	/random	reads	–	similar	to	writes	
• Scan	–	Bigtable	API	for	scanning	values	in	a	row	range	–	reduces	
RPCS	executed	

33



34



Performance	Observations

• Table	shows	number	of	ops/sec/tablet	server	

• Graph	shows	aggregate	#	ops/second	
• Single	Tablet	Server	performance	
– Random	reads	slower	by	order	of	magnitude	

– Transfer	64KB	block,	use	one	1000-byte	value	

– Could	reduce	block	size	to	8K	for	this	use	case	

– Random	reads	from	memory	faster	-	1000-byte	reads	satisfied	from	
Tablet	Server’s	local	memory	

– Scans	faster	–	returns	large	number	of	values	in	response	to	a	single	RPC,	
amoritizes	RPC	overhead	

– Writes:	TS	appends	writes	to	a	single	commit	log	–	use	group	commit	
(Reads	–	one	disk	seek	for	each	access)	

– Random	&	sequential	writes	have	similar	performance

35



Performance	-	Scaling

• Throughput	increases	as	tablet	servers	increased	
• Bottleneck	on	performance	is	the	tablet	server	CPU	

• Drop	from	1-50	TSs,	caused	by	an	imbalance	in	load	
– Rebalancing	throttled	

– Load	shifted	around	during	benchmark	

• Random	read	–	poor	scaling	
– Transfer	one	64KB	block	for	each	1000-byte	read,	saturates	network	

36



37



Real	Applications

• Google	Analytics	
– Raw	click	table	(200TB)	–	row	for	each	end-user	session	–	name	is	web	

site	name	and	session	creation	time	
• Sessions	for	the	same	web	site	are	contiguous	and	sorted	chronologically	

– Summary	table	(20TB)	–	predefined	summaries	for	each	web	site	
• Generated	from	Raw	Click	table	by	Map	Reduce	jobs	

• Google	Earth	
– Preprocessing	pipeline	uses	table	to	store	raw	imagery	(70TB)	–	served	

from	disk	

– Preprocessing	–	Map	Reduce	over	Bigtable	to	transform	data	

– Serving	system	–	one	table	to	index	data	stored	in	GFS	(500GB)	–	in-
memory	column	families	used

38


