Cloud & Cluster Data Management

BIGTABLE

Bigtable — Motivation & Uses

» Store structured data — scale to large size

— Petabytes on commodity servers

* Goals:

Wide applicability
Scalablity

High performance
High availability

Bigtable

<> MapReduce

N/

Google File
System

* Uses: Web indexing, Google Earth, Google Finance

— Data type and size: URLs vs. Satellite imagery
— Throughput-oriented batch jobs vs. latency-sensitive jobs

* bulk processing, real-time data serving

Bigtable — Key Concepts

Column family data model

Dynamic control over data layout and format

Control whether to serve data out of memory vs. disk

Data is uninterpreted strings (no typing)
Partitioning:
Transactions: single-row only

— But rows are heavyweight

Bigtable

<> MapReduce

N/

Google File
System

Bigtable - Tables

Bigtable cluster — set of processes that runs Bigtable software

— Each process serves a set of tables

Tables:
— Sparse, Distributed, Persistent, Multi-dimensional Sorted map

Three Dimensions:

— row: string
(row key, column key,

— column: strin .
8 timestamp) -> cell

— time: int64
(row:string, column:string, time:int64) -> (uninterpreted) string

"contents:" "anchor:cnnsi.com” "anchor:my.look.
: ‘ ‘
|
,.__,___-}-_--.; ______ R A !---% ______
- | | !
| = - " " "
"com.cnn.www" —* —= 2 CNN" |=- t, CNN.com" [tg

Bigtable - Rows

* Rows — kept ordered by row key
— Choice of row key important

* Select row key to get good locality of data access (i.e. reverse hostname)
* Small row ranges => small # machines

— Rows with consecutive keys grouped into tablets
— Partitioning is fixed (in contrast with RDBMS)
— #rows in a table is unbounded

* Tablets are unit of distribution and load balancing
* Row is unit of transactional consistency

— Row read/writes are serializable
— No transactions across rows

"contents:" "anchor:cnnsi.com” "anchor:my.look.ca"
l
B BRI vl
) ! !
| | — " "
"com.cnn.www" — 1 =Rttt "CNN" |=t, CNN.com" = tg

Bigtable - Columns

e Columns grouped into Column Families

— Data stored in column families is usually of the same type (compressed
together)

— Number of column families intended to be small (unlimited rows, cols)
» Keeps shared meta-data small

— Column families must be created explicitly
— Column key is family:qualifier

e Example column families:
— language: cell contains: language id
— anchor: referring site cell contains: text associated with link

e Column family is unit of access control

"contents:" "anchor:.cnnsi.com” "anchor:my.look.ca"
: ' L
B BRI ool
) | I
| |] "
"com.cnn.www" —t® ittt "CNN" |=-t, CNN.com" = tg

Column key Column family

"contents:" '@)r:cnnsi.look.ca“
1

]

Row key T PR _ TR
) l . -
Coom cnnwwwWe im0 [SONN® |-ty [*CNN.com" |- ¢

"chtmis. o

Bigtable - Timestamps

Multiple version of the data in a cell - indexed by timestamp

Timestamps assigned implicitly by Bigtable or explicitly by

clients
Why might you chose implicit or explicit timestamps?

Bigtable stores in decreasing timestamp order (most recent

version read first
What implicit assumption are they making?

Garbage collection settings:
— Keep last N versions
— Keep last 7 days of data

Webtable ex: timestamps are times pages were crawled

Bigtable API

Create delete tables and column families
Change cluster, table and column family meta-data

Single-row transactions

— Atomic read-modify-write sequences on a single row

Does not support transactions across row keys

Bigtable APl — Row Mutation Example

// Open the table
Table *T = OpenOrDie("/bigtable/web/webtable");

// Write a new anchor and delete an old anchor
RowMutation ri1(T, "com.cnn.www");
r1.Set("anchor:www.c-span.org", "CNN");
r1.Delete("anchor:www.abc.com") ;

Operation op;

Apply(&op, &rl);

“Irrelevant details were elided to keep the example short.”
10

Bigtable APl — Scanner Example

Scanner scanner(T); Could restrict the scan
ScanStream *stream;

stream = scanner.FetchColumnFamily("anchor"); -produce only anchors whose

stream->SetReturnAllVersions(); columns match
scanner .Lookup("com.cnn.www") ; anchor:*.cnn.com,
for (; !stream->Done(); stream->Next()) {
printf("%s %s %1ld %s\n", - produce only anchors whose
scanner .RowName () , timestamps fall within ten days
stream->ColumnName () , of the current time

stream->MicroTimestamp(),
stream->Value());

}
"contents:" "anchor:cnnsi.com” "anchor:my.look.ca"
| | !
' ¢ ;) ‘ : ‘ I
e e d e e e e — | i Sp— PR . R S —— § P ———
: “ehtmis ' ' ' '
"com.cnn.www" —te et T "CNN" |=-t, "CNN.com" {=- tg

"<htmis..."|

11

Bigtable APl — More details

Create delete tables and column families
Change cluster, table and column family meta-data
Single-row transactions

— Atomic read-modify-write sequences on a single row

Does not support transactions across row keys
Interface for batching writes across row keys at the client

Execution of client-supplied scripts in server address space
(Sawzall)
— Filtering, summarization, but no writes into Bigtable

Wrappers written so Bigtable can be an input source and
output source for MapReduce jobs

12

Bigtable — Building Blocks

mapreduce worker

application server

application server

Bigtable server GFS server

Cluster management system

Linux

A typical set of processes that run on a Google machine. A machine
typically runs many jobs from many different users.

13

Bigtable — Building Blocks

Shared pool of machines — many applications

Uses Google cluster management system for scheduling jobs,
managing resources, monitoring machine status, dealing with
machine failures

GFS used to store log files and data files
— Files are replicated with GFS

SSTable immutable-file format
— Persistent, ordered immutable map from keys->values
— Keys and values are arbitrary byte strings

Operations: lookup key and iterate over key/values in a range
SSTable contains blocks (64KB in size), block index at end of file

— Block index always stored in memory — lookup is one disk seek

SSTable can be memory mapped

14

Recall: Bigtable - Rows

* Rows — kept ordered by row key
— Choice of row key important

* Select row key to get good locality of data access (i.e. reverse hostname)
* Small row ranges => small # machines

— Rows with consecutive keys grouped into tablets
— Partitioning is fixed (in contrast with RDBMS)
— #rows in a table is unbounded

* Tablets are unit of distribution and load balancing
* Row is unit of transactional consistency

— Row read/writes are serializable
— No transactions across rows

"contents:" "anchor:cnnsi.com” "anchor:my.look.ca"
l
B BRI vl
) ! !
| | — " "
"com.cnn.www" — 1 =Rttt "CNN" |=t, CNN.com" = tg

I | 1 5

Discussion Question

* Pick your favorite application. How does the single row
transaction work for your application?
— Areas in the application where this transaction model works well?

— Areas in the application where this transaction model does not work
well?

16

Bigtable - Implementation

 Three components What was a tablet again?
— Library linked into clients

— One master server
— Tablet servers (dynamically removed or added)

 Master Duties:
— Assigns tablets to Tablet Servers
— Detects addition & expiration of tablet servers
— Load Balancing
— Garbage collection of GFS files
— Schema changes (table & column family additions and deletions)

e Client

— Communicates with Tablet Servers for data
— Clients cache Tablet Server location information
— Most clients don’t communicate with the master

17

Bigtable - Implementation

Tablet location
requests and
Client < responses S| Master
Bigtable Client Read/write
Library - Includes data
cache of tablet
locations
Master:

eassigns tablets to tablet servers

edetects new and expired tablet servers
ebalances tablet-server load

egarbage collection of GFS files

eschema changes (i.e. column family creations)

Tablet Server

Tablet Server

Tablet Server

10-1000 table
per tablet
server

tablet servers
can be
dynamically
added or

removed

Bigtable — Tablets

» Table consists of a set of tablets

e Each tablet contains all of the data associated with a row range

(range partitioni

ng on row key)

* Table automatically split into multiple tablets — each tablet
about 1GB in size

» Tablet cannot be split in the middle of the row — row should be

< few hundred GB

"com.cnn.www" —

"contents:" "anchor:.cnnsi.com” "anchor:my.look.ca"
X ‘
! !] |
h_J-___}____J ______ R A S | S
| . | I I
- 4™ CNN" |=- t, "“CNN.com" = tq

19

Chubby file

Tablet Location

Root tablet

Other

METADATA
tablets

UserTable1

e

(

>

b - - - - - - -

Fig. 5. Tablet location hierarchy.

20

What is Chubby?

A highly-available and persistent distributed lock service

Uses 5 active replicas — one is the master

Replicas are consistent in the face of failure

Provides a namespace that consists of directories and small files
Each directory or file can be used as a lock

— Reads and writes to a file are atomic

Chubby client provides consistent caching of chubby files

21

Tablet Location

Location tree is like B+ tree
Chubby stores the location of the root tablet

— Root tablet — stores locations of tablets of a special METADATA table
METADATA tablets contains locations of user tablets

Root is never split

— Hierarchy is always 3 levels
— Up to 2% bytes with 128MB Metadata Tablets (234 tablets)

METADATA table/tablets store location and a rowkey — tableid
and end row

Each METADATA row ~1k

22

Chubby file

Tablet Location

Root tablet

Other

METADATA
tablets

UserTable1

e

(

>

b - - - - - - -

Fig. 5. Tablet location hierarchy.

23

Client - Tablet Location

Client traverses hierarchy to locate tablets, caches locations

Empty / stale cache

— Moves up in hierarchy if information is incorrect or not known (like B+
tree)

— Empty client cache can cause 3 round trips to master + 1 read from
Chubby

— Stale client cache — 6 round trips + 1 read from Chubby

» Stale cache entries discovered on misses

Client also uses prefetching to limit round trips to master

Metadata tables also store logging info (for debugging and
performance analysis)

Notice the tradeoffs

24

Tablet Assighment

Tablet assigned to at most one tablet server

Master keeps track of live tablet servers and assignment of
tablets to tablet servers

Chubby used to keep track of tablet servers

— TS starts — creates and acquires exclusive lock on file in specific Chubby
directory (servers directory)

— Master monitors this directory
— Tablet stops serving if it loses its exclusive lock (i.e. network partition
causes loss of chubby session)
Master periodically pings tablet servers to make sure they still
have their locks

25

Tablet Representation

memtable \ Read Op) .
I
Memory / \
GFS / \
commit log |

SSTable Files

26

Tablet Serving — General Features

Persistent state of tablet stored in GFS
Updates written to a commit log that stores redo records
Recently-committed updates stored in memtable
Copy on write for updates

Redo after crash:

— Read metadata from METADATA table
» SSTables & set of redo points

— Read indices of SSTables into memory & reconstruct memtable by
redoing updates since last redo point (checkpoint)
Tablet servers handle tablet splits, other changes handled by
master (table created, tablets merged)
— TS commits split — recording new info in metadata table, notifies master

— If notification fails, split discovered when a TS goes to load the tablet
(file will contain only a portion of the tablet)

27

Tablet Serving — Writes & Reads

* Write operation
— Check for well-formed

— Check for authorization (chubby file — usually hit on chubby client cache)
(remember perms are at column family level)

— Valid mutation written to commit log (group commit)
— After commit, contents inserted into memtable

* Reads
— Check for well-formed

— Check for authorization

— Read operation executed on a merged view of SSTables and the
memtable (both sorted)

28

Compactions

 Memtable increases in size with write operations
— At threshold — minor compaction

* memtable frozen
e new memtable created
* frozen memtable converted to an SSTable and written to GFS

— Goals:
e Shrinks memory usage of memtable
* Reduces amount of data that has to be read from the commit log if server dies
* Merging compaction
— Reads SSTables and memtable and outputs a SSTable
— Run in background
— Discard memtable and SSTable when done

* Major compaction — leaves only one SSTable

— Non-major compactions can leave deletion entries and deleted data
— Major compaction leaves no deleted data
— Major compactions done periodically on all tables

29

Bigtable Schemas - Chubby

e Schemas stored in Chubby
e Recall: Chubby provides

— Atomic whole-file writes
— Consistent caching

* Chubby client sends update to Chubby master, ACL is checked

e Master installs new schema by (atomically) writing new schema
file
» Tablet servers get schema by reading appropriate file from

Chubby

— Usually a hit on the Chubby cache
— File is up-to-date due to consistent caching

« Comment: note impact of having only column families at
schema level

30

Bigtable - Refinements

Goal of refinements: performance, availability, reliability

Locality groups

— Column families assigned to client-defined locality group

— SSTable generated for each locality group in each tablet (vertical
partitioning)

— Segregate column families that are not typically accessed together

Ex: locality groups for Webtable

— page meta-data (language, checksums)
— page contents

User wanting meta-data does not need to read page contents

Locality groups can be declared to be in-memory
— Good for small pieces of data that are accessed frequently
— Note: SSTables immutable

Clients control if SSTables for a locality group are compressed
— Compress page contents in Webtable example

Bigtable-Caching / Commit Log

* Scan Cache

— High-level cache that caches key-value pairs
— Useful for applications that read the same data repeatedly

* Block Cache
— Lower-level cache, caches SSTable blocks
— Useful for applications that read data that is close to the data they
recently read (sequential read, random reads)
* Commit Log
— If commit logs were separate files, lots of disk seeks for writes

— One commit log per tablet server — good performance during normal
operation, but complicates recovery

 When TS crashes, its tablets are split among many other tablet servers — all of
which now need the commit log...

32

Performance

N tablet servers — scale as N varies

Same number of client servers as tablet servers
— Clients are not a bottleneck

R — rows in test — chosen to read/write approx 1GB of data per
tablet server

Sequential write
— partitioned into 10N equal-sized ranges, assigned to N clients
— Worote a single string under each row key (uncompressible)

Random write

— Same as sequential except row key is hashed modulo R to spread load
uniformly

Sequential /random reads — similar to writes

Scan — Bigtable API for scanning values in a row range — reduces
RPCS executed

Table I. Number of 1000-byte values read/written per
second. The values are the rate per tablet server.

Experiment # of Tablet Servers

1| 50 | 250 | 500
random reads 1212 593 479 241
random reads (mem) | 10811 8511 | 8000 | 6250
random writes 8850 3745 | 3425 | 2000
sequential reads 4425 2463 | 2625 | 2469
sequential writes 8547 3623 | 2451 | 1905
scans 15385 | 10526 | 9524 | 7843

—@— scans
- @@= random reads (mem)
—— random writes

- A= sequential reads
—»— sequential writes
= == random reads

100 200 300 400 500
Number of tablet servers

Values read/written per second
o
ke

Performance Observations

e Table shows number of ops/sec/tablet server

* Graph shows aggregate # ops/second

* Single Tablet Server performance

Random reads slower by order of magnitude
Transfer 64KB block, use one 1000-byte value
Could reduce block size to 8K for this use case

Random reads from memory faster - 1000-byte reads satisfied from
Tablet Server’s local memory

Scans faster — returns large number of values in response to a single RPC,
amoritizes RPC overhead

Writes: TS appends writes to a single commit log — use group commit
(Reads — one disk seek for each access)

Random & sequential writes have similar performance

35

Performance - Scaling

Throughput increases as tablet servers increased
Bottleneck on performance is the tablet server CPU

Drop from 1-50 TSs, caused by an imbalance in load

— Rebalancing throttled
— Load shifted around during benchmark

Random read — poor scaling

— Transfer one 64KB block for each 1000-byte read, saturates network

36

Table II. Distribution of Number of Tablet Servers in Bigtable Clusters.

0

20

50
100

> 500

| # of tablet servers | # of clusters |

19
49
99
499

259
47
20
50
12

Table III. Characteristics of a Few Tables in Production Use.

Project Size | Comp. | #(B) B @ Yo Frontend
name (TB) ratio Cells | Families | Groups | MMap
Crawl 800 11% 1000 16 8 0% No
" Crawl 50 33% 200 2 2 0% No
Analytics 20 29% 10 1 1 0% Yes
Analytics 200 14% 80 1 1 0% Yes
" Base 2 31% 10 29 3 15% Yes
" Earth 05 | 64% 5 7 2 33% Yes
Earth 70 - 9 8 3 0% No
_Orkut 9 - 0.9 8 5 1% Yes
Pers. Search 4 47% 6 93 11 5% Yes

Size (measured before compression) and # Cells indicate approximate sizes. Comp. ratio (com-
pression ratio) is not given for tables that have compression disabled. Frontend indicates that
the application’s performance is latency-sensitive.

37

Real Applications

* Google Analytics

— Raw click table (200TB) — row for each end-user session —name is web
site name and session creation time

» Sessions for the same web site are contiguous and sorted chronologically
— Summary table (20TB) — predefined summaries for each web site
* Generated from Raw Click table by Map Reduce jobs

* Google Earth

— Preprocessing pipeline uses table to store raw imagery (70TB) — served
from disk

— Preprocessing — Map Reduce over Bigtable to transform data

— Serving system — one table to index data stored in GFS (500GB) — in-
memory column families used

38

