
PERCOLATOR
Cloud	&	Cluster	Data	Management

1

Why	Percolator?

• Transform	large	repository	of	data	with	small	independent	
mutations	
– Petabytes	of	data,	billions	of	updates	per	day	on	thousands	of	machiens	

• Option	1	:	Databases	
– Do	not	meet	storage	or	throughput	requirements	

• Option	2:	Map	Reduce	
– Rely	on	large	batches	for	efficiency	

– Cannot	process	small	updates	individually	

– “MapReduce	and	other	batch-processing	systems	cannot	process	small	
updates	individually	as	they	rely	on	creating	large	batches	for	
efficiency”

2

Let’s	Build	a	Web	Index!

• Google	Web	Index	structure:	
– Initially	built	by	crawling	every	page	on	the	web	

– Only	one	URL	if	multiple	pages	have	same	content	(highest	page	rank)	

– Links	are	inverted	

– Links	to	duplicates	->	page	with	highest	page	rank	

• Initial	index	creation	-	series	of	Map	Reduce	operations	
– Clustering	duplicates,	inverting	links	(note	one	step	finishes	before	the	

next)

3

4urls urls

MAP1A MAP1B

REDUCE1A REDUCE1B

clustered	urls		 clustered	urls

Url	with	highest	
page	rank	has	been	
selected	at	this	

point

This	MapReduce	
operation	clusters	

duplicates

MAP2A MAP2B

REDUCE2A REDUCE2B

This	MapReduce	operation	
inverts	links	–	note	url	with	
highest	page	rank	does	not	
change	during	this	operation

Web	Table

5

Discussion	Question

• How	would	you	update	the	web	index	with	MapReduce?	

• Do	you	agree	with	the	statement:	“MapReduce	and	other	
batch-processing	systems	cannot	process	small	updates	
individually	as	they	rely	on	creating	large	batches	for	
efficiency”?

6

Now	we	need	to	Update	the	Index

• Option	1:	
– Run	MR	over	the	new	pages	(but	there	are	links	between	new	and	old	

pages)	

• Option	2:	Rerun	MR	over	entire	repository	of	pages	
– Expensive!	Latency	proportional	to	size	of	repository,	not	size	of	update	

– But…it	used	to	be	done	this	way…	

• Option	3:	Database	(updates	+	xacts)	
– We	know	the	story	here…DB	can’t	handle	the	volume	

• Option	4:	Big	Table	
– Scales…but…no	transactions	across	rows…

7

So…Percolator

• Features	
– Incrementally	process	index	updates	

– Work	proportional	to	size	of	updates,	not	size	of	repository	

• Use	cases	
– Strong	consistency	requirements	(else	Bigtable)	

– Large	computation	requirement	of	some	sort	(data,	CPU,	etc.)	(else	
DBMS)	

• Use	in	Google	web	indexing		
– Process	documents	as	they	are	crawled	

– Reduce	average	document	processing	latency	by	a	factor	of	100	

– Reduce	average	age	of	document	appearing	in	search	result	by	50%

8

Percolator	-	Features

• ACID-compliant	transactions	–	snapshot	isolation	semantics	
– Random	access	to	a	multi-PB	repository	

– Required	because	need	many	threads/many	machines	for	high	
throughput		

• Observers	:	organize	incremental	computation	
– Observer	invoked	when	user-specified	column	changes	

– Observers	complete	tasks,	create	more	work	by	writing	to	a	table	–	
triggers	execution	of	another	observer

9

Observer1 Observer2 Observer3

write

write write

trigger trigger trigger

Percolator	-	Design

Percolator	-	Design
• Two	main	abstractions:	ACID	transactions,	Observers	

• Observers	linked	into	Percolator	worker	
• Percolator	worker	scans	Bigtable	for	column	changes	and	
invokes	corresponding	observers

Percolator	
Worker	
(observers	
linked	in)

Bigtable	
Tablet	Server

GFS	
Chunkserver

Timestamp	
oracle

Lightweight	
lock	service

r/w	
RPCs

r/w	
RPCsProvides	strictly	

increasing	timestamps

Used	to	make	the	search	
for	dirty	notifications	

more	efficient

Design	Considerations

• Design	Influences	
– Requirement	to	run	at	massive	scales	

– Lack	of	requirement	for	low-latency	

• Lazy	approach	to	cleaning	up	locks	left	behind	by	failed	
transactions	
– Simple-to-implement	

– Delays	transaction	commits	by	tens	of	seconds	

– Tolerable	for	a	system	incrementally	updating	a	web	index	(not	tolerable	
for	OLTP	systems)	

• No	central	location	for	transaction	management	
– No	global	deadlock	detector	

– Increases	latency	of	conflicting	transactions	

– Allows	scaling

12

Bigtable	Review

• Column	family	data	model	

• Atomic	read-modify-write	operations	on	individual	rows	

• Architecture:	single	master,	many	tablet	servers	

• Locality	groups	for	column	families	
– Storage	is	per	locality	group	(vertical	partitioning)	

– Can	be	declared	to	be	in-memory

13

Bigtable	-	Implementation

14

Client Master

Tablet	Server

Tablet	Server

Tablet	Server

10-1000	tablets	
per	tablet	
server

Bigtable	Client	
Library	-	Includes	
cache	of	tablet	
locations

Tablet	location	
requests	and	
responses

Read/write	
data	

Transactions

• Cross-row,	cross-table	transactions	
• ACID	snapshot	isolation	semantics	

• API	
– C++	code	with	calls	to	Percolator	API	in	the	code	

– Calls	to	Get()	and	Commit()	are	blocking	

• Usefulness	
– Can	assume	hash	of	contents	of	document	is	consistent	with	table	that	

indexes	duplicates,	entries	in	both	tables	match	

– Without	xacts,	could	have	entry	in	doc	table	that	corresponds	to	no	URL	
in	duplicates	table	(Invariant:	Only	one	URL	if	multiple	pages	have	same	
content	(highest	page	rank)

15

Transaction	API	Example

16

Commit	fails	if	two	URLs	with	same	
content	hash	were	processed	at	

the	same	time

Gets	and	Commits	are	blocking

Snapshot	Isolation

• Presents	each	transaction	with	appearance	of	reading	from	
stable	snapshot	at	some	timestamp	

• Protects	against	write-write	conflicts		
– Two	concurrent	transactions	(A	&	B)	that	write	to	same	cell	–	either	A	or	

B	will	commit	–	one	will	abort	

• Does	not	provide	serializability	
• Subject	to	write	skew	
– A	and	B	both	read	values	v1	and	v2,	A	updates	v1,	B	updates	v2	
– A	and	B	both	commit	

• Reads	are	much	more	efficient	
– Data	read:	Bigtable	look	up	at	a	given	timestamp	
– Reads	do	not	acquire	locks	

• Writes	appear	at	a	later	timestamp	than	the	read	timestamp

17

This	is	the	big	advantage

But	didn’t	you	just	say	Gets	
are	blocking?

Transaction	Example

18

• Transactions	perform	reads	at	start	timestamp	(open	square)	

• Perform	writes	at	commit	timestamp	(closed	circle)	

• T2	does	not	see	writes	from	T1	

• T3	sees	writes	from	T1	and	T2	

• If	T1	and	T2	write	the	same	cell,	one	or	both	will	abort

Impacts	of	Percolator	as	Client	Library

• Where	to	integrate	locking?	

• Parallel	databases	
– Integrate	into	component	that	manages	disk	access	

– Each	node	grants	locks	and	deny	accesses	to	data	it	owns	

– Distributed	deadlock	detection	required	

• Percolator	
– No	convenient	place	to	intercept	traffic	and	assign	locks	

– Must	explicitly	maintain	locks	

– Locks	must	persist	through	machine	failure	

– Lock	service	must	provide	high	throughput	and	low	latency

19

Percolator	Lock	Server

• Lock	server	requirements	
– Replicated	(survive	machine	failure)	

– Distributed	and	balanced	(to	handle	load)	

– Write	to	a	persistent	data	store	

• Percolator	uses	Bigtable	to	store	locks	
• Locks	
– Stored	in	in-memory	columns	in	the	same	Bigtable	database	that	stores	

data	

– Lock	columns	are	added	to	Bigtable	rows	(c:lock,	c:write,	c:data,	c:notify,	
c:ack)	

– Lock	columns	stored	in	same	row	as	data	

– Uses	Bigtable	row	transactions	to	read	and	modify	locks	while	reading	
data	in	a	row

20

Transaction	Protocol	-	Set

• Transaction	constructor	asks	timestamp	oracle	for	start	
timestamp	

• Calls	to	Set	(updates)	are	buffered	until	commit	time	

• Commit	Protocol:	two-phase	commit

21

Transaction	Protocol	–	Two	Phase	Commit

• Phase	I	“prewrite”	
– Attempt	to	lock	all	the	cells	being	written	(designate	one	as	primary)	

– Aborts	if:	
• Sees	write	record	after	it’s	start	timestamp	(avoids	write-write	conflicts)	

• Sees	another	lock	at	any	timestamp	(possibly	abort	unnecessarily	if	xact	is	
slow	releasing	locks,	but	that	is	considered	unlikely)	

– If	no	conflict,	write	lock	and	data	to	cell	at	start	timestamp	

• If	no	cells	conflict	->	Phase	II	
– Client	obtains	commit	timestamp	from	timestamp	oracle	

– For	each	cell	(starting	with	primary)	–	replace	lock	with	write	record	-	
makes	write	visible	to	readers		

– Once	primary	write	is	visible	transaction	is	committed

22

Transaction	Protocol	-	Get

• Locks	are	read	by	Get	requests,	but	Get	Requests	do	not	
acquire	locks	

• Get()	
– Checks	for	lock	with	timestamp	before	start	timestamp	

– If	lock	is	present,	must	wait	

– If	no	conflicting	lock,	read	latest	write	record	and	return	data	

– Note	that	no	read	locks	are	required	

• Comment:	Get	must	return	all	committed	writes	before	the	
xact’s	start	timestamp	

• Comment:	Transactions	on	different	machines	interact	through	
row	transactions	on	Bigtable	tablet	servers

23

Transaction	Protocol	-	Example

24

Initial	state

Locks	Bob’s	acct	
balance

Locks	Joe’s	acct	
balance	(secondary	

lock)

Transaction	Protocol	-	Example

25

Commit	point,	erase	
primary	lock	and	
creates	a	write	

record,	balance	$3	
now	visible	to	

readers

Delete	lock	on	Joe’s	
balance	and	writes	

Joe’s	balance

Percolator:	Columns

26

Client	Failure

• Percolator	client	fails	during	commit	->	locks	will	be	left	behind	

• Locks	must	be	cleaned	up	so	future	xacts	do	not	hang	
indefinitely	

• Lazy	Cleanup	of	Locks	
– Wait	until	transaction	A	encounters	a	conflicting	lock	to	clean	up	

– If	A	encounters	locks	left	behind	by	B,	may	erase	B’s	locks	

– Designation	of	primary	is	used	to	avoid	A	cleaning	up	B’s	transactions	if	B	
is	just	slow	(but	not	failed)	

– Performing	cleanup	or	commit	must	modify	the	primary	lock		
• B’s	primary	lock	in	this	example	

• B	must	check	primary	&	replace	with	write	to	commit	

• A	must	check	for	primary	&	make	sure	it	exists	to	erase	any	of	B’s	locks	(what	
if	primary	is	missing??)

27

Client	Failure	II

• Percolator	client	fails	during	Phase	II	
– Transaction	has	committed	(primary	data	is	visible	to	other	readers)	

– Must	perform	roll-forward	in	such	cases	

– Transaction	(A)	that	encounters	locks	can	distinguish	by	seeing	if	the	
primary	lock	(from	xact	B)	exists	or	has	been	replaced	by	a	write	record	

– Stranded	lock	is	replaced	with	a	write	record

28

Client	Failure	-	Notes

• Safe,	but	undesirable,	to	clean	up	locks	held	by	live	clients	
(performance	penalty)	

• Locks	cleaned	up	when	belong	to	dead,	stuck	worker	
• Running	workers	write	tokens	into	chubby	lock	service,	tokens	
serve	as	liveness	indicator	

• Additionally	write	wall	time	into	lock	–	if	lock	contains	too-old	
wall	time,	will	be	cleaned	up	(even	if	liveness	token	is	valid)	

• Wall	time	updated	during	committing

29

Timestamps

• Timestamp	oracle	hands	out	timestamps	in	strictly	increasing	
order	

• Every	xact	contacts	timestamp	oracle	twice,	so	must	scale	well	
– Allocates	range	of	timestamps,	writing	highest	allocated	timestamp	to	

stable	storage	

– Satisfies	requests	from	memory	

– Restart	->	may	skip	timestamp,	but	won’t	to	backwards	

• Percolator	worker	batches	timestamp	requests	across	
transactions	(saves	RPCs)	

• 2	million	timestamps	per	second	served	from	a	single	machine

30

Notifications

• Observers	
– Written	by	users	

– Observers	are	triggered	to	run	by	changes	to	the	table	

– All	observers	linked	into	the	Percolator	worker	binary	

– Observers	register	a	function	and	set	of	columns	with	Percolator	–	
percolator	invokes	function	after	data	is	written	to	a	column	

• Observers	complete	a	task	and	create	more	work	by	writing	to	a	
table	
– MapReduce	runs	loader	transactions	to	trigger	Percolator	

– Triggers	Document	processor	(parse,	extract)		->	Document	processor	
triggers	Clustering	->	Clustering	triggers	Export		

31

32

Percolator	
Worker	
(observers)

Bigtable	
Tablet	Server

GFS	
Chunkserver

Timestamp	
oracle

Lightweight	
lock	service

r/w	
RPCs

r/w	
RPCs

Notifications	–	Notes

• Triggered	observer	runs	in	a	separate	transaction	from	
triggering	write		

• Focus	is	incremental	computation	(not	data	integrity)	

• Avoid	multiple	observers	on	one	column	

• At	most	one	observer’s	transaction	will	commit	for	each	change	
of	an	observed	column	

• But:	multiple	writes	to	an	observed	column	may	cause	observer	
to	be	invoked	only	once	(message	collapsing)

33

Notifications	-	Implementation

• Each	observed	column	has	related	“ack”	column	
– Contains	the	latest	start	timestamp	at	which	the	observer	ran	

– If	observed	column	written	after	last	ack,	run	observer,	else	do	not	run	

• Efficiently	find	dirty	cells	with	observers	that	need	to	be	run	
– Notifications	are	rare	

• Solution:	“notify”	Bigtable	column		
– One	entry	for	each	dirty	cell,	write	a	notify	cell	when	an	observed	cell	is	

written	–	workers	–	distributed	scan	over	notify	column	

– Notify	column	is	a	hint	

– Notify	stored	as	separate	locality	group	(vertical	partitioning	for	
improved	read	performance)		

• Issue:	two	observer	–	one	row	(solution:	lightweight	locks)	
• Issue:	bus	bunching	(solution:	teleporting)

34

Discussion

• Percolator	–	~50	Bigtable	ops	/	document	vs.	MR	–	large	read	to	
GFS	to	obtain	data	for	100s	of	web	pages	

• Percolator	–	large	#	RPCs	

• Added	read-modify-write	in	a	single	RPC	to	Bigtable	API	

• Collect	lock	operations	into	batches	–	delays	lock	for	several	
seconds	
– Adds	a	few	seconds	to	latency	

– Increases	time	window	for	conflicts,	but	environment	is	low-contention	

• Batch	read	operations		
• Prefetching	(reduces	Bigtable	reads	by	factor	of	10)

35

Thread-per-Request

• Decision:	API	calls	blocking	–	run	thousands	of	threads	/	
machine	to	provide	parallelism	&	CPU	utilization	

• Decision:	use	thread-per-request	model	

• Thread-per-request		-	positives	
– Simplified	application	code	

– Bundling	state	for	each	data	fetch	from	the	table	->	complicate	
development	

– Crash	debugging	simplified	–	meaningful	stack	traces	 	

• Thread-per-request	-	negatives	
– Potential	race	conditions	(less	than	expected)	

– Linux	kernel	high	thread	count	scalability	issues	(hacked	around	it)

36

Engineering	Issues

• Percolator	uses	more	resources	to	process	a	fixed	amount	of	
data	than	a	traditional	DBMS	–	cost	of	scalability	

• Percolator	has	less	latency,	but	more	resources	than	
MapReduce	

• Questions:	
– “How	much	of	an	efficiency	loss	is	too	much	to	pay	for	the	ability	to	add	

capacity	needlessly	simply	by	purchasing	more	machines?”	

– “How	does	one	trade	off	the	reduction	in	development	time	provided	by	
a	layered	system	against	the	corresponding	decrease	in	efficiency?”

37

Evaluation	–	Converting	From	Map	Reduce

• Converted	Google	“base”	index	updates	to	Percolator	
• MR	–	crawled	documents	–	fed	those	+	existing	documents	
thorough	100	MapReduces	
– 2-3	days	to	index	each	document	before	could	be	returned	as	search	

result	

• Caffeine	(based	on	Percolator)	
– Same	#	documents,	median	document	processed	100x	faster	
– Adding	a	new	clustering	phase	->	additional	lookup	vs.	extra	repository	

scan	
– Approximately	10	observers	(multiple	clustering	phases	in	one	xact	vs.	

100	MRs)	
– Essentially	immune	to	stragglers	(stragglers	big	issue	in	MR	system)	

• MR	–	each	of	the	100	MRs	needed	to	be	configured	and	could	
fail	individually	
– Newer	system	easier	to	operate

38

Clustering	over	Synthetic	Benchmark

39

Clusters	new	docs	against	billion-document	repository	–	three	
clustering	keys	(avg	3.3	docs/cluster)

Caffeine	uses	~twice	
as	many	resources	to	
process	the	same	

crawl	rate.	Resources	
maxed	out	at	crawl	

rate	of	40%

MR	can	sustain	a	
crawl	rate	of	>	100%	

in	this	case

Cost	of	Transactional	Semantics

40

Comparison	of	Percolator	to	“raw	“	Bigtable	using	microbenchmarks	on	a	single	
tablet	server.	

Data	in	tablet	server’s	cache	and	batching	optimizations	disabled.	

Write	single	cell,	then	commit.	Worst-case	for	Percolator.	

Note	reads	more	expensive	than	writes	–	accounts	for	much	of	the	Write	difference	
(Percolator	Write	is	Bigtable	Read,	Write,	Write)	

Timestamp	fetching	overhead	not	measured.

TPC-E	Benchmark	(OLTP)

41

Did	not	measure	TPC-E	latency	

Near-linear	scaling,	CPU	cores	are	limiting	resource

Percolator:	11,200	
TPS	on	15,000	cores	
(cheaper	cores)

DBMS:	3,183	TPS	on	
64	Intel	Nehalem	

cores

30x	more	CPU	per	
transaction	than	the	
benchmark	system,	

in	this	test

This	increase	is	cost	
of	layering,	but	they	
get	scalability…

Recovery	after	Failure

421/3	Tablet	Servers	killed

Comparison	Percolator	vs	DBMS	&	Bigtable

• Percolator	achieved	its	goal	of	reducing	the	latency	of	indexing	
a	single	document	

• Percolator	lacks	query	language	
• Percolator	lacks	full	set	of	relational	operators	(i.e.	join)	
• Scales	better	than	existing	parallel	databases	
• Deals	better	with	failed	machines	than	existing	database	

• Percolator:	Commodity	machines,	shared-nothing	hardware,	
communication	is	explicit	RPCs	only

43

