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Preliminaries: Introduction to COP 

• The constrained optimization problem 
(COP) can be expressed in its general form 
as follows 
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Constrained Optimization: Example 

• You are given a string of length L. You are to tie it 
around a rectangular gift box (l x w x h) with a 
constant or fixed width ‘w’ using any length of 
this string (up to L). 

• Can you find the dimensions (length and height 
only since the width is fixed) of the box with the 
largest volume that you can tie with this string? 

• Mathematically 
– Optimize the objective function 

• Max V=wlh 

– Subject to constraints 
• 2(l+h)≤L 

© 2008, Fayyaz A. Afsar, DCIS, PIEAS. 
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Lagrangian Formulation 

• Lagrange proposed a method for the solution 
of COP 

 

 

 

 

– f(x) and gi(x) are convex functions 

– hi(x) are affine functions 
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Lagrangian Formulation… 

• The solution proposed by Lagrange is based on 
the following unconstrained minimization 

 

 

• Where          and         have the following 
properties 

 

 
– Large penalties added when the constraints are not satisfied 

• Unconstrained optimization now leads to satisfaction of the constrains and then 
optimization of the original objective function 

 

 g

iL x

     
1 1

min
pm

g h

i i

i i

f L L
 

  
x

x x x

 h

iL x

 
 

 
 

0
, 1...

0

0
, 1...

0

g i

i

h i

i

g
L i m

else

h
L i p

else

 
 


 
 


x
x

x
x



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab 6 

Lagrangian Formulation… 

• One possible way of achieving the above 
mentioned properties for the two penalty 
functions is as follows 
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When the constraint is violated 
(gi(x)>0) the maximization with 
respect to αi leads to infinity as 
long as αi is non-negative 

When the constraint is not 
violated the maximization with 
respect to αi leads to zero as long 
as αi is non-negative 
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Lagrangian Formulation… 

• Thus we can write the optimization problem as 

 

 

 

 

 

• αi and βi are called Lagrange multipliers (or dual 
variables) and the function (below) is called the 
Lagrange Function 
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Lagrangian function: Gift example 

• The problem can be rewritten as  

 
• Min f(x) = -x1x2 

• Subject to constraints 

2(x1+x2) ≤ L, OR 

g(x) = 2(x1+x2) – L ≤ 0 

 

• This implies 
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Lagrangian function: example… 

• This can be solved as 
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Classification 

• Before moving on with the discussion let us 
restrict ourselves to the following problem 

– T = Given Training Set = {(x(i),yi), i = 1…N} 
• x(i)ε Rm {Data Point i } 

• yi: class of data point i (+1 or -1) 
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Use of Linear Discriminant in Classification 

• Classifiers such as the Single Layer Perceptron (with 
linear activation function) and SVM use a linear 
discriminant function to differentiate between 
patterns of different classes 

• The linear discriminant function is given by 
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from the training data  
using some error 
criterion 
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Use of Linear Discriminant in Classification 

• There are a large number of lines (or in 
general ‘hyperplanes’) separating the two 
classes 
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Use of Linear Discriminant in Classification 

x1 

x2 > 0

< 0

Misclassified as -1  by the ‘red’ 
discriminant 

The boundary which lies at the 
maximum distance from data 
points of both classes gives better 
tolerance to noise and better 
generalization 
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Margin of a linear classifier 

• The width by which the boundary of a linear 
classifier can be increased before hitting a 
data point is called the margin of the linear 
classifier 
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Support Vector Machines (SVM) 

• Support Vector Machines are linear classifiers 
that produce the optimal separating boundary 
(hyper-plane) 

– Find w and b in a way so as to maximize the 
margin while classifying all the training patterns 
correctly (for linearly separable problem) 
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Finding Margin of a Linear Classifier 

• Consider a linear classifier with the 
boundary  

 

• We know that the vector w is 
perpendicular to the boundary 

– Consider two points x(1) and x(2) on 
the boundary 
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Finding Margin of a Linear Classifier 
• Let x(s) be a point in the feature space 

with its projection x(p) on the 
boundary 

 

• We know that,  
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Example 

• Consider the line 

–  x1+2x2+3 = 0 

• The distance of 
(4,2) is 

–  r = 4.92 
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Finding Margin of a Linear Classifier 

• The points in the training set that 
lie closest (having minimum 
perpendicular distance) to the 
separating hyper-plane are called 
support vectors 

• Margin is twice of perpendicular 
distances of the hyper-plane from 
the nearest support vector of the 
two classes 
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Geometric vs. Functional Margin 

• Functional Margin 
– This gives the position 

of the point with 
respect to the plane, 
which does not depend 
on the magnitude. 

• Geometric Margin 
– This gives the distance 

between the given 
training example and 
the given plane. 
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Finding Margin of a Linear Classifier 

• Assume that all data is at least distance 1 from the hyperplane, then 
the following two constraints follow for a training set {(x(i) ,yi)}  

 

wTx(i) + b ≥ 1    if yi = 1 

wTx(i) + b ≤ -1   if yi = -1 
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Support Vector Machines 
• Support Vector Machines, in their basic form, are linear 

classifiers that are trained in a way so as to maximize the 
margin 

• Principles of Operation 
– Define what an optimal hyper-plane is (in way that can be 

identified in a computationally efficient way) 
• Maximize margin 

– Allows noise tolerance 

– Extend the above definition for non-linearly separable 
problems 
•  have a penalty term for misclassifications 

– Map data to an alternate space where it is easier to 
classify with linear decision surfaces 
• reformulate problem so that data is mapped implicitly to this space 

(using kernels) 
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Margin Maximization in SVM 

• We know that if we require  
 
 
 

• Then the margin is  
 
 
 

• Margin maximization can be performed by 
reducing the norm of the w vector 
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wTx(i) + b ≥ 1    if yi = 1 

wTx(i) + b ≤ -1   if yi = -1 



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab 24 

SVM as an Optimization problem 

• We can present SVM as the following 
optimization problem 
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SVM as an Optimization problem 

• Combining the objective function and the 
constraints (represented as losses) as follows 

 

 

 

• The constraint cost function can be written as 
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SVM as an Optimization problem 

• Combining 

 

 

 

 

 

• This is called the primal form of the 
optimization problem 

• The corresponding dual can be written as  

   

   

0
1

0
1

1
1

2

1
1

2

w,

w,

min w w max w x

minmax w w w x

i

i

N
iT T

i i
b

i

N
iT T

i i
b

i

Let P y b

y b















         

         





   
0

1

1
1

2w,
maxmin w w w x

i

N
iT T

i i
b

i

Let D y b







         


This is the Lagrangian (αi are the Lagrange Multipliers) 



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab 27 

SVM as an Optimization problem 

• Since the optimization is convex therefore if 
the Karush-Kuhn-Tucker conditions are 
satisfied then  the primal and dual optimal 
values will be equal 

• In simple words the optimization problem in 
SVM can be interpreted as  
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SVM as an Optimization problem 
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SVM as an Optimization problem 
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SVM as an Optimization problem 

• Thus the problem can be written as  

 

 

 

 

 

 

• This quadratic optimization problem can be 
solved for αi using standard optimization 
packages 
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SVM as an Optimization problem 

• The training points with their corresponding αi 

greater than zero lie on the boundary and are 
thus called support vectors as they support the 
boundary 

• Once αi have been found, the weight can be 
calculated as  

 

 

• Classification 

– The label of an unknown point can be determined by  
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  1x w x
Tf b   

x1 

x2 

  1x w x
Tf b  

> 0

< 0

  0x w x
Tf b  
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Example problem 
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Matrix formulation of SVM Problem 

 

 

 

 

 

• If we define the following: 

– 𝜶 = 𝛼1 𝛼2 … 𝛼𝑁 𝑻 

– 𝒚 = 𝑦1 𝑦2 … 𝑦𝑁 𝑻 

– 𝟏𝑁 = 1 1 … 1 𝑻 

– 𝑿 𝑑×𝑁 = 𝒙𝟏𝑦1 𝒙𝟐𝑦2 … 𝒙𝑵𝑦𝑁  
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𝑚𝑎𝑥𝜶 𝟏𝑇𝜶 −
1

2
𝜶 𝑇𝑿𝑇𝑿𝜶 

Subject to: 
𝜶 ≽ 𝟎 

𝒚 𝑇𝜶 = 0 
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Solving the SVM using QP 

• CVXOPT is a Python package that implements a quadratic programming 
solver 

– http://abel.ee.ucla.edu/cvxopt/userguide/coneprog.html#quadratic-
programming 

• cvxopt.solvers.qp(P, q[, R, s[, U, v[, solver[, initvals]]]]) 

– Solves the following problem for 𝒛: 

35 

𝑚𝑖𝑛𝒛

1

2
𝒛𝑇𝑷𝒛 + 𝒒𝑻𝒛 

Subject to: 
𝑹𝒛 ≼ 𝒔 
𝑼𝒛 = 𝒗 

SVM Problem 

𝑚𝑎𝑥𝜶 𝟏𝑇𝜶 −
1

2
𝜶 𝑇𝑿𝑇𝑿𝜶 

Subject to: 
𝜶 ≽ 𝟎 

𝒚 𝑇𝜶 = 0 

𝒛 = 𝜶 
𝑷 = 𝑿𝑇𝑿 
𝒒 = −𝟏𝑁 
𝑹 = −𝑰𝑁×𝑵 
𝒔 = 𝟎𝑁 
𝑼 = 𝒚 𝑇 
𝒗 = 0 
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Programming the SVM 

 

36 
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Example: Solution of the OR problem 
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Handling Non-Separable Patterns 

• All the derivation till now was based on the 
requirement that the data be linearly 
separable 

– Practical Problems are Non-Separable 

• Non-separable data can be handled by 
relaxing the constraint 

 

• This is achieved as 
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Handling Non-Separable Patterns (Soft Margin) 

  1x w x
Tf b   

x1 

x2 

  1x w x
Tf b  

> 0

< 0

  0x w x
Tf b  

0 1

i

i







 

i


1

i

i









ζi tells us about the 
extent of 
misclassification 
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Handling Non-Separable Patterns (Soft Margin) 

• Our objective in designing a SVM here is to 
maximize the margin while minimizing the 
misclassification error 

• The misclassification error can be written as: 

 

 

• Since this function is non-linear and non-
convex, therefore we choose to use an 
approximate given by 
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Soft Margin SVM as an Optimization Problem 

• The overall optimization problem can be 
written as 
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The objective function 
now optimizes two 
conflicting objectives: 
Maximization of the 
margin and 
minimization of the 
margin violations 
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Soft Margin SVM as an Optimization Problem 

• Writing the constraints as losses, we have 
 
 
 
 
 
 
 
 

• This is the primal form of the optimization 
problem 
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Soft Margin SVM as an Optimization Problem 

• The Dual Form is 

 

 

 

• Since the optimization problem is convex, 
therefore the optimal values of the dual and 
primal are equal 

• Therefore the optimization problem can be 
written solved in its dual form 
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Soft Margin SVM as an Optimization Problem 
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Soft Margin SVM as an Optimization Problem 
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• This problem can be solved using standard optimization packages 
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Soft Margin SVM as an Optimization Problem 

• Some Observations 
– αi will be non-zero (positive) only for the points 

that are support vectors 

– βi = C - αi will be zero for the points that violate 
the margin condition 

– C is the upper bound on αi  

– C is the weight of the penalty of the term 
representing margin violation  
• If C is small, then more margin violations will occur 

• If C is large, lesser margin violations will result 

– C can be found out through cross-validation 



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab 47 

Example 
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Example… 
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SVMs uptil now 

• Vapnik and Chervonenkis:  
– Hard SVM (1962) 
– Theoretical foundations for SVMs 

• Corinna Cortes 
– Soft SVM (1995) 

 

• Enter: Bernard Scholkopf (1997) 
– Complete Kernel trick! 
– Kernels not only allow nonlinear 

boundaries but also allow 
representation of non-vectoral 
data 
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Rosenblatt 
1928-1971 

V. Vapnik 
1936 - 

Chervonenkis 
1938 - 2014 

C. Cortes 
1961 - 

Scholkopf 
1968 - 

http://www.svms.org/history.html 
 

R. A. Fisher 
1890-1962 

http://www.svms.org/history.html
http://www.svms.org/history.html
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Reading 

• Sections 10.1-10.3 

• Sections 13.1-13.3 

• Alpaydin, Ethem. Introduction to Machine 
Learning. Cambridge, Mass. MIT Press, 2010. 
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Nonlinear Separation through Transformation 

• Given a classification problem with a 
nonlinear boundary, we can, at times, find a 
mapping or transformation of the feature 
space which makes the classification problem 
linear separable in the transformed space 
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Examples: Transformation 
• Let’s define the mapping 

– 𝝓
𝒙𝟏

𝒙𝟐
=

𝒙𝟏
𝒙𝟐

𝒙𝟏𝒙𝟐

 

• With a mathematical proof show that the above mapping makes the XOR 
classification problem linearly separable.  
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XOR: Linear Separability 
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Examples: Transformation 
– Does this mapping do it? 

• 𝝓
𝒙𝟏

𝒙𝟐
=

𝒙𝟏
𝒙𝟐

1
 

– What about this one? 

• 𝝓
𝒙𝟏

𝒙𝟐
= 𝒙𝟏 + 𝒙𝟐 − 1 𝟐 
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Transformation Examples 
• Can you find a transform that makes the following classification problems linear separable? 

Can you draw the data points in the new transformed feature space? 
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(III) 
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Transformations 

• Transformations can be used to make the data 
linearly separable 

• But it may not always be possible to find a 
transformation 

– Use a soft-SVM  
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Another look at the SVM 

• We can replace the dot product 𝒙(𝒊)𝑻
𝒙(𝒋) with: 

– a generalized dot product (inner product) 

•  𝒙(𝒊), 𝒙(𝒋) = 𝝓 𝒙(𝒊) 𝑻
𝝓 𝒙(𝒋)  

• Advantage: can implement feature transformations 

–  or a function (called the kernel function) 

• 𝑲𝒊𝒋 = 𝑲 𝒊, 𝒋  

• Advantage: No need for explicit feature representation 
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Replacement with a feature transformation 

• For the XOR problem we defined the transformation 

– 𝝓
𝒙𝟏

𝒙𝟐
=

𝒙𝟏
𝒙𝟐

𝒙𝟏𝒙𝟐

 

• We can thus define an inner product  

– 𝒙(𝒊), 𝒙(𝒋) = 𝝓 𝒙(𝒊) 𝑻
𝝓 𝒙(𝒋) = 𝑥1

(𝑖)
𝑥2

(𝑖)
𝑥2

(𝑖)
𝑥2

(𝑖)

𝑥1
(𝑗)

𝑥2
(𝑗)

𝑥2
(𝑖)

𝑥2
(𝑗)

 

= 𝑥1
(𝑖)

𝑥1
(𝑗)

+ 𝑥2
(𝑖)

𝑥2
(𝑗)

+ 𝑥1
(𝑖)

𝑥2
(𝑖)

𝑥1
(𝑗)

𝑥2
(𝑗)

 

• This inner product implements the transformation and 
can potentially lead to a non-linear boundary 
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Kernel Functions ↔ Feature Transformation 

• Since 𝒙(𝒊), 𝒙(𝒋)  is always a scalar, we can actually use a function 
(called a kernel function 𝑘 𝑖, 𝑗 ) to map the two examples to a scalar 
value 

– For the previous transformation 

• 𝑘 𝑖, 𝑗 = 𝑥1
(𝑖)

𝑥1
(𝑗)

+ 𝑥2
(𝑖)

𝑥2
(𝑗)

+ 𝑥1
(𝑖)

𝑥2
(𝑖)

𝑥1
(𝑗)

𝑥2
(𝑗)

 

– Thus, the inner product from a feature transformation can be 
written as a kernel and a valid kernel function can thus be 
considered as an inner product in some feature space (proven by 
Moore-Aronszajn Theorem) 

• We’ll talk what makes kernel valid later 

– A kernel is thus a generalized dot product 

• A measure of how similar the two examples are  
– not of whether they belong to the same class 
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Some kernel functions 
• We can use arbitrary kernels, for example … 

– The dot-product kernel 

• 𝑲(𝒂, 𝒃)  = 𝒂𝑻𝒃 

– Feature transform: 𝛟 𝒂 = 𝒂 

– The homogenous polynomial kernels 

• 𝑲 𝒂, 𝒃 = 𝒂𝑻𝒃
𝒑

, 𝒑 is called degree 

– For 𝒑 = 𝟐 and 2D data, 𝒂 =
𝑎1

𝑎2
: 𝛟 𝒂 =

𝑎1
2

𝑎2
2

2𝑎1𝑎2

 

– The Radial Basis Function (RBF) Kernel 

• 𝑲 𝒂, 𝒃 = 𝒆
−

𝒂−𝒃 𝟐

𝟐𝝈𝟐 , 𝝈 controls the spread of the Gaussian 
– Feature transform?  

• The RBF and Homogenous Polynomial kernels implement non-linear boundaries 
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Kernels as Similarity Functions 

• We have been saying that kernels are similarity 
functions – here is how 

– Example 

• For 𝑲 𝒙, 𝒚 = 𝒙, 𝒚 = 𝒙𝑻𝒚 

• For the dot product, the associated distance measure is 

– 𝒅 𝒙, 𝒚 𝟐 = 𝒙 − 𝒚 𝟐 = 𝒙 − 𝒚 𝑻 𝒙 − 𝒚 = 𝒙𝑻𝒙 − 𝟐𝒙𝑻𝒚 +
𝒚𝑻𝒚 = 𝒙 𝟐 + 𝒚 𝟐 − 𝟐𝒙𝑻𝒚 

– This implies: 𝑲 𝒙, 𝒚 =
𝟏

𝟐
𝒙 𝟐 + 𝒚 𝟐 − 𝒅 𝒙, 𝒚  

– Thus, the linear kernel measures the similarity between two 
points as the inverse of the square of the Euclidean distance 
between them (up to 𝒙 𝟐 + 𝒚 𝟐) 

» Thus the SVM with a linear kernel is no different, in its 
distance measurements, from a nearest neighbor classifier!! 
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Another advantage 

 

 

 

 

 

 

• Once we replace the dot product with a kernel function (i.e., perform the 
kernel trick or ‘kernelize’ the formulation), the above formulation no 
longer requires any features! 

• As long as  you have a kernel function, everything works 

– Remember a kernel function is simply a mapping from two examples 
to a scalar 
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𝑘 𝑖, 𝑗  
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But how is that an advantage? 

• When the number of dimensions is very large, an implicit 
representation through a kernel is helpful 

• Let’s say we have a document classification problem 

– We define a M-dimensional feature vector for each 
document that indicates if it has any of the pre-specified 
number of words in it (1) or not (0) 

– M can be very large 

– The dot product of two feature vectors is equal to the 
number of common words between the two documents 

– Why not simply count the number of words? 

• We can  now do that with the kernel trick 
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Kernel Trick 

• You can develop a ‘kernelized’ version of the 
soft-SVM as well 

• Advantage 

– Removes the explicit representation of data 

– Allows non-linear boundaries 

 

• For understanding a ‘valid’ kernel, we need to 
introduce the concept of a kernel matrix 
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Kernel Matrix 

• For 𝒙(𝟏) =
0
0

, 𝒙(𝟐) =
0
1

, 𝒙(𝟑) =
1
0

, 𝒙(𝟒) =
1
1

 

With the kernel: 𝑘 𝑖, 𝑗 = 𝑥1
(𝑖)

𝑥1
(𝑗)

+ 𝑥2
(𝑖)

𝑥2
(𝑗)

+ 𝑥1
(𝑖)

𝑥2
(𝑖)

𝑥1
(𝑗)

𝑥2
(𝑗)

 

– 𝑘 1,1 = 0 

– 𝑘 1,2 = 0 

– … 

• We get this matrix 

– 𝐾𝑖𝑗 = 𝑘 𝑖, 𝑗  

 

– If you know the kernel matrix you don’t need to know the original features 
anymore 
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0 1 0 1 

0 0 1 1 

0 1 1 3 
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Modification Due to Kernel Function 

• Change all inner products to kernel functions 

• For training, 
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Modification Due to Kernel Function 

• For testing, the new data z is classified as class 
1 if f >0, and as class 2 if f <0 
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The discriminant function 

• For a test object z, the discriminant function 
essentially is a weighted sum of the similarity 
between z and a pre-selected set of objects 
(the support vectors) 
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• If we define the following: 

– 𝜶 = 𝛼1 𝛼2 … 𝛼𝑁 𝑻 

– 𝒚 = 𝑦1 𝑦2 … 𝑦𝑁 𝑻 

– 𝜶 ∘ 𝒚 = 𝛼1𝑦1 𝛼2𝑦2 … 𝛼𝑁𝑦𝑁 𝑻 

• ∘ to mean element wise product 

– Hadamard product 

– 𝟏𝑁 = 1 1 … 1 𝑻 

– 𝑿 𝑑×𝑁 = 𝒙𝟏 𝒙𝟐 … 𝒙𝑵  

• This implies: 𝑲 = 𝑿𝑇𝑿 
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𝑚𝑎𝑥𝜶 𝟏𝑇𝜶 −
1

2
𝜶 ∘ 𝒚 𝑇𝑿𝑇𝑿 𝜶 ∘ 𝒚  

Subject to: 
𝜶 ≽ 𝟎 

𝒚 𝑇𝜶 = 0 

𝑚𝑎𝑥𝜶 𝟏𝑇𝜶 −
1

2
𝜶 ∘ 𝒚 𝑇𝑲 𝜶 ∘ 𝒚  

Subject to: 
𝐶 ≽ 𝜶 ≽ 𝟎 
𝒚 𝑇𝜶 = 0 Notice that there isn’t 

any data related term 

here 

 

This replacement of the 

dot product with the 

kernel is called the 

kernel trick 

Vectorization 
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Assignment 2B 

• Implement a soft kernelized SVM 
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What is the behavior of an inner product? 

• Definition of an inner product 

– Symmetry: 𝒙, 𝒚 = 𝒚, 𝒙  

– Linearity: 𝛼𝒙 + 𝛽𝒚, 𝒛 = 𝛼 𝒙, 𝒛 + 𝛽 𝒚, 𝒛  
• Principle of superposition 

– Positive Definiteness 
• 𝒙, 𝒙 ≥ 𝟎 

• 𝒙, 𝒙 = 𝟎 iff 𝒙 = 𝟎 

• These conditions need to be satisfied by the 
kernel function too 
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Kernel Matrix 

• What’s the kernel matrix for 
this problem with the linear 
kernel? 

 

 

 

• With the polynomial kernel 
(p=2)? 
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0 0 0 0 

0 1 0 1 

0 0 1 1 

0 1 1 2 

0 0 0 0 

0 1 0 1 

0 0 1 1 

0 1 1 4 
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Conditions for a function to be a kernel 
• A kernel function must satisfy Mercer’s 

condition 

– The kernel matrix must be symmetric positive 
semi-definite 

– What does that mean? 

• 𝑲 𝒙(𝟏), 𝒙(𝟐) = 𝑲 𝒙(𝟐), 𝒙(𝟏)  

• 𝜸𝑻𝑲𝜸 ≥ 0 for any 𝜸 
– The Eigen-values of 𝑲 must be non-negative 
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0 0 0 0 

0 1 0 1 

0 0 1 1 

0 1 1 2 
Eigen Values 
0,0,1,3 

0 0 0 0 

0 1 0 1 

0 0 1 1 

0 1 1 3 
Eigen Values 
0, 0.26, 1, 3.73 

Dimensions: 2 

Since we have 4 points, there 

exist labelings for which the 

classification problem is not 

linearly separable  

Dimensions: 3 

Since we have 4 points, these 

points will always be separable in 

the corresponding feature space 

no matter how you label them or 

where you put them! 
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Example: Kernel 

• 𝑲 𝒖, 𝒗 = 𝒆
−

𝒖−𝒗 𝟐

𝟐𝝈𝟐  

• The kernel matrix is (for 𝝈𝟐 = 0.5): 

 

 

 

 

• Eigenvalues are 1.93, 0.73, 0.47, 0.86 
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1 𝑒−1 𝑒−1 𝑒−2 

𝑒−1 1 𝑒−2 𝑒−1 

𝑒−1 𝑒−2 1 𝑒−1 

𝑒−2 𝑒−1 𝑒−1 1 
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Kernel Construction 
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Example 

• Suppose we have 5 1D data points 

– x1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 1 
and 4, 5 as class 2  y1=1, y2=1, y3=-1, y4=-1, y5=1 

• We use the polynomial kernel of degree 2 

– K(x,y) = (xy+1)2 

– C is set to 100 

• We first find i (i=1, …, 5) by 
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Example 

• By using a QP solver, we get 

– 1=0, 2=2.5, 3=0, 4=7.333, 5=4.833 

– Note that the constraints are indeed satisfied 

– The support vectors are {x2=2, x4=5, x5=6} 

– The bias turns out to be b = 9 

• The discriminant function is 
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Example 

Value of discriminant function 

1 2 4 5 6 

class 2 class 1 class 1 
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Solving the XOR 

• C=1 

• With polynomial kernel of degree 2 
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Solving the XOR 

• C=1 

• With RBF Kernel (sigma = 0.5) 
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Solving the XOR 

• C=1 

• With RBF Kernel (sigma = 0.3) 
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3D Plot 
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Using the SVM 

• Read:  
 

• Ben-Hur, Asa, and Jason Weston. 2010. “A User’s Guide 
to Support Vector Machines.” In Data Mining 
Techniques for the Life Sciences, edited by Oliviero 
Carugo and Frank Eisenhaber, 223–39. Methods in 
Molecular Biology 609. Humana Press. 
http://dx.doi.org/10.1007/978-1-60327-241-4_13 
 

• http://pyml.sourceforge.net/doc/howto.pdf 
 

•  
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http://dx.doi.org/10.1007/978-1-60327-241-4_13
http://dx.doi.org/10.1007/978-1-60327-241-4_13
http://dx.doi.org/10.1007/978-1-60327-241-4_13
http://dx.doi.org/10.1007/978-1-60327-241-4_13
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Steps for Feature based Classification 

• Prepare the pattern matrix 

• Select the kernel function to use 

• Select the parameter of the kernel function and 
the value of C 

– You can use the values suggested by the SVM 
software, or you can set apart a validation set to 
determine the values of the parameter 

• Execute the training algorithm and obtain the i 

• Unseen data can be classified using the i and the 
support vectors 
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Choosing the Kernel Function 

• Probably the most tricky part of using SVM. 

• The kernel function is important because it creates 
the kernel matrix, which summarizes all the data 

• In practice, a low degree polynomial kernel or RBF 
kernel with a reasonable width is a good initial try 
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Choosing C 

• Cross-validation 

– To assess how good a classifier is we can use 
cross-validation 

• Divide the data randomly into k parts 
– If the data is imbalanced, use stratified sampling 

• Use k-1 parts for training 

• And the held-out part for testing to evaluate accuracy 
or ROC curve or other performance metrics 

• To choose C, you can do nested cross-
validation 
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Handling data imbalance 

• If the data is imbalanced (too much of one 
class and only a small number of examples 
from the other) 

– You can set an individual C for each example 

– Can also be used to reflect a priori knowledge 
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Strengths and Weaknesses of SVM 

• Strengths 

– Margin maximization and kernelized 

– Training is relatively easy  

•  No local optimal, unlike in neural networks 

– It scales relatively well to high dimensional data 

– Tradeoff between classifier complexity and error can be controlled 
explicitly (through C) 

– Non-traditional data like strings and trees can be used as input to 
SVM, instead of feature vectors 

• Weaknesses 

– Need to choose a “good” kernel function. 
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Multi-class Classification 

• SVM is basically a two-class classifier 

• One can change the QP formulation to allow 
multi-class classification and such SVMs do 
exist 

• But you can also try to do multi-class 
classification  
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End of Lecture 

We want to make a machine that will be 
proud of us. 

 
- Danny Hillis 


