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Classification 

• Before moving on with the discussion let us 
restrict ourselves to the following problem 

– T = Given Training Set = {(x(i),yi), i = 1…N} 
• x(i)ε Rm {Data Point i } 

• yi: class of data point i (+1 or -1) 
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Use of Linear Discriminant in Classification 

• Classifiers such as the Single Layer Perceptron (with 
linear activation function) and SVM use a linear 
discriminant function to differentiate between 
patterns of different classes 

• The linear discriminant function is given by 

     sgn x sgn w x
Tf b 

x1 

x2 

Linear Discriminant 
Function 

  0x w x
Tf b  

> 0

< 0

w & b are ‘learned’ 
from the training data  
using some error 
criterion 
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Use of Linear Discriminant in Classification 

• There are a large number of lines (or in 
general ‘hyperplanes’) separating the two 
classes 

x1 

x2 

  0x w x
Tf b  

> 0

< 0

Which separator is the best? 
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Use of Linear Discriminant in Classification 

x1 

x2 > 0

< 0

Misclassified as -1  by the ‘red’ 
discriminant 

The boundary which lies at the 
maximum distance from data 
points of both classes gives better 
tolerance to noise and better 
generalization 
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Margin of a linear classifier 

• The width by which the boundary of a linear 
classifier can be increased before hitting a 
data point is called the margin of the linear 
classifier 
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x2 > 0

< 0

x1 

x2 > 0

< 0

Linear Classifiers 
with larger margins 
are better 
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Support Vector Machines (SVM) 

• Support Vector Machines are linear classifiers 
that produce the optimal separating boundary 
(hyper-plane) 

– Find w and b in a way so as to maximize the 
margin while classifying all the training patterns 
correctly (for linearly separable problem) 
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Finding Margin of a Linear Classifier 

• Consider a linear classifier with the 
boundary  

 

• We know that the vector w is 
perpendicular to the boundary 

– Consider two points x(1) and x(2) on 
the boundary 
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Tf b  

  0x w x for all x on the boundary
Tf b  
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Finding Margin of a Linear Classifier 
• Let x(s) be a point in the feature space 

with its projection x(p) on the 
boundary 

 

• We know that,  
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Tf b  

    
0x w x

p pTf b  
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Example 

• Consider the line 

–  x1+2x2+3 = 0 

• The distance of 
(4,2) is 

–  r = 4.92 
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Finding Margin of a Linear Classifier 

• The points in the training set that 
lie closest (having minimum 
perpendicular distance) to the 
separating hyper-plane are called 
support vectors 

• Margin is twice of perpendicular 
distances of the hyper-plane from 
the nearest support vector of the 
two classes 

x1 

x2 > 0

< 0

Nearest Support Vector 
 

2 2

*
x
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f
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Geometric vs. Functional Margin 

• Functional Margin 
– This gives the position 

of the point with 
respect to the plane, 
which does not depend 
on the magnitude. 

• Geometric Margin 
– This gives the distance 

between the given 
training example and 
the given plane. 
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Finding Margin of a Linear Classifier 

• Assume that all data is at least distance 1 from the hyperplane, then 
the following two constraints follow for a training set {(x(i) ,yi)}  

 

wTx(i) + b ≥ 1    if yi = 1 

wTx(i) + b ≤ -1   if yi = -1 
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Support Vector Machines 
• Support Vector Machines, in their basic form, are linear 

classifiers that are trained in a way so as to maximize the 
margin 

• Principles of Operation 
– Define what an optimal hyper-plane is (in way that can be 

identified in a computationally efficient way) 
• Maximize margin 

– Allows noise tolerance 

– Extend the above definition for non-linearly separable 
problems 
•  have a penalty term for misclassifications 

– Map data to an alternate space where it is easier to 
classify with linear decision surfaces 
• reformulate problem so that data is mapped implicitly to this space 

(using kernels) 
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Margin Maximization in SVM 

• We know that if we require  
 
 
 

• Then the margin is  
 
 
 

• Margin maximization can be performed by 
reducing the norm of the w vector 

2

w
 

wTx(i) + b ≥ 1    if yi = 1 

wTx(i) + b ≤ -1   if yi = -1 
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SVM as an Optimization problem 

• We can present SVM as the following 
optimization problem 
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 

2

1 1

1 1

max
w

. .

w x ,  s.t. 

w x ,  s.t. 

iT

i

iT

i

s t

b i y

b i y

 

     

     

  

1

2

1

min w w

. .

w x

T

iT

i

s t

y b

 

  

OR 



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab 

 

 

-0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5

-3

-2

-1

0

1

2

3

4
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Handling Non-Separable Patterns 

• All the derivation till now was based on the 
requirement that the data be linearly 
separable 

– Practical Problems are Non-Separable 

• Non-separable data can be handled by 
relaxing the constraint 

 

• This is achieved as 
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Handling Non-Separable Patterns (Soft Margin) 

  1x w x
Tf b   
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violation of example i 
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Handling Non-Separable Patterns (Soft Margin) 

• Our objective in designing a SVM here is to 
maximize the margin while minimizing the 
misclassification error 

• The misclassification error can be written as: 

 

 

• Since this function is non-linear and non-
convex, therefore we choose to use an 
approximate given by 
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Soft Margin SVM as an Optimization Problem 

• The overall optimization problem can be 
written as 

 

  

  

1

1

1

2

1

2

1

0

1 0

0

w,

w,

min

w x

m

w w

. .

w win

w. x.

N
T

i
b

i

iT

i i

i

iT

i i

i

N
T

i
b

i

C

s yt

C

b

Or

y bs t





















  



   

 





Weight of the penalty 
due to margin violation 

The objective function 
now optimizes two 
conflicting objectives: 
Maximization of the 
margin and 
minimization of the 
margin violations 



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab 22 

Example 
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Example… 
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SVMs uptil now 

• Vapnik and Chervonenkis:  
– Hard SVM (1962) 
– Theoretical foundations for SVMs 
– Structural Risk Minimization 

• Corinna Cortes 
– Soft SVM (1995) 

 

• Enter: Bernard Scholkopf (1997) 
– Representer Theorem 
– Complete Kernel trick! 
– Kernels not only allow nonlinear 

boundaries but also allow 
representation of non-vectoral data 
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Reading 

• Sections 10.1-10.3 

• Sections 13.1-13.3 

• Alpaydin, Ethem. Introduction to Machine 
Learning. Cambridge, Mass. MIT Press, 2010. 
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