

Recommender Systems

Dr. Fayyaz ul Amir Afsar Minhas

PIEAS Biomedical Informatics Research Lab Department of Computer and Information Sciences Pakistan Institute of Engineering & Applied Sciences PO Nilore, Islamabad, Pakistan http://faculty.pieas.edu.pk/fayyaz/

Slides adapted from Dr. Andrew Ng's videos on Recommender Systems https://www.youtube.com/playlist?list=PL npY1DYXHPT-3dorG7Em6d18P4JRFDvH

CIS 621: Machine Learning

PIEAS Biomedical Informatics Research Lab

Recommenders

- Task
 - Predict the rating or preference a user would give an item
- Given:
 - Training data
 - Items rated by users
- Issues
 - New users
 - New items
 - Cold Start
- Other names
 - Matrix Completion Problem
 - Information Filtering Problem

https://en.wikipedia.org/wiki/Cold_start

Examples

MOVIE / USERS	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance Forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. Karate	0	0	5	?

Applications

- Youtube
- Facebook
- Amazon
- Last.fm
- Netflix

 Competition: 2006-2009 \$1, 100M movie ratings, 107 algorithms

Pandora

https://en.wikipedia.org/wiki/Recommender_system

How would you solve this problem?

Existing Approaches

- Content Based
 - Extract Features for each item
- Collaborative (Filtering)
 No features needed
- Hybrid Approaches

Content Based Filtering: Representation

• Extract Features for each item

$$- x^{i} = \begin{bmatrix} 1 & x_{1}^{i} & \dots & x_{K}^{i} \end{bmatrix}, i = 1 \dots m$$

• Assign a weight (parameter) vector for each user

$$- \mathbf{w}^{j} = [w_{k}^{j}], j = 1 \dots u, k = 0 \dots K$$

• The "score" of a user for an item is then given by

$$- f_{ij} = \left(\boldsymbol{w}^j \right)^T \boldsymbol{x}^i$$

MOVIE / USERS	Alice (1)	Bob (2)	Carol (3)	Dave (4)	(romance) x ₁	(action) x ₂
Love at last	5	5	0	0	0.90	0.00
Romance Forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	4	0	?	0.99	0.00
Nonstop car chases	0	0	5	4	0.10	1.00
Swords vs. Karate	0	0	5	?	0.00	0.90

7

Content Based Filtering: Evaluation

- Applying principal of structural risk minimization
- Minimize Empirical Error
 - Define Empirical Error
 - For user j, let y_{ij} be the rating of item i if the user has rated that item
 - Let's use r_{ij} as an indicator variable to indicate if the user has rated the item $(r_{ij} = 1)$ or not $(r_{ij} = 0)$
 - The empirical error term can be written as (similar to regression) $E = \sum_{j=1}^{u} \sum_{i=1:r_{ij}=1}^{m} \left(\left(\boldsymbol{w}^{j} \right)^{T} \boldsymbol{x}^{i} - y_{ij} \right)^{2}$
- Regularize

$$R = \sum_{j=1}^{u} \sum_{k=1}^{K} \left(w_k^j \right)^2$$

Content Based Filtering: Optimization

• The complete optimization problem becomes

$$min_{w^{j},j=1...u} \frac{1}{2} \sum_{j=1}^{u} \sum_{i=1:r_{ij}=1}^{m} \left(\left(w^{j} \right)^{T} x^{i} - y_{ij} \right)^{2} + \frac{\lambda}{2} \sum_{j=1}^{u} \sum_{k=1}^{K} \left(w_{k}^{j} \right)^{2}$$

 This problem can be solved using Gradient Descent

$$w_k^j := w_k^j - \alpha \nabla w_k^j$$

Write the expression for ∇w_k^J

Solution

- $\nabla w_0^j = \sum_{i=1:r_{ij}=1}^m \left((w^j)^T x^i y_{ij} \right)$
- $\nabla w_k^j = \sum_{i=1:r_{ij}=1}^m \left(\left(\boldsymbol{w}^j \right)^T \boldsymbol{x}^i y_{ij} \right) x_k^i + \lambda w_k^j$
 - For k=1...K

Observations and Problems

- What do the weight/parameter vectors signify?
- Issues
 - Linear
 - New Users
 - New Items
 - Loss function improvements
 - Regularization improvements
 - Feature Extraction
 - Requires analysis of the content

Collaborative Filtering

We don't know the features

MOVIE / USERS	Alice (1)	Bob (2)	Carol (3)	Dave (4)	(romance) x ₁	(action) x ₂
Movie 1	5	5	0	0	?	?
Movie 2	5	?	?	0	?	?
Movie 3	?	4	0	?	?	?
Movie 4	0	0	5	4	?	?
Movie 5	0	0	5	?	?	?

• Let's ask the user how much they like "romance" or "action"

$$- w^{1} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, w^{2} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, w^{3} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}, w^{4} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$$

How can we find the features?

• Now we want to assign values to the features x^i of each movie such that

$$(\boldsymbol{w}^{j})^{T} \boldsymbol{x}^{i} \approx y_{ij}$$
 for all $r_{ij} = 1$

 We want the features such that the given user preferences *explain* the data

Application of SRM

- Given: **w**¹, ..., **w**^u
- Find: $x^i = \begin{bmatrix} 1 & x_1^i & \dots & x_K^i \end{bmatrix}$, $i = 1 \dots m$
- So as to solve the SRM structured as follows

$$min_{x^{i},i=1...m} \frac{1}{2} \sum_{j=1}^{u} \sum_{i=1:r_{ij}=1}^{m} \left(\left(\boldsymbol{w}^{j} \right)^{T} \boldsymbol{x}^{i} - y_{ij} \right)^{2} + \frac{\lambda}{2} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(\boldsymbol{x}_{k}^{i} \right)^{2}$$

– Error

- Regularization
- Can be solved using gradient descent $x_k^i := x_k^i \alpha \nabla x_k^i$

Collaborative Filtering

- Given the movie features (and the movie ratings)
 We can estimate the user parameters (weights)
- Given the user-parameters (and the movie ratings)
 - We can estimate the movie features
- We can, ask the users for initial preferences and then estimate the features and then update the preferences and keep going until convergence

 $w \to x \to w \to x \to \cdots$

Collaborative Filtering

- Given \mathbf{x}^{i} , $i = 1 \dots m$ estimate \mathbf{w}^{j} , $j = 1 \dots u$ $min_{w^{j}, j=1 \dots u} \frac{1}{2} \sum_{j=1}^{u} \sum_{i=1:r_{ij}=1}^{m} \left((\mathbf{w}^{j})^{T} \mathbf{x}^{i} - y_{ij} \right)^{2} + \frac{\lambda}{2} \sum_{j=1}^{u} \sum_{k=1}^{K} (w_{k}^{j})^{2}$
- Given \mathbf{w}^{j} , $j = 1 \dots u$ estimate \mathbf{x}^{i} , $i = 1 \dots m$, $x_{0}^{i=1}$ $min_{x^{i},i=1\dots m} \frac{1}{2} \sum_{j=1}^{u} \sum_{i=1:r_{ij}=1}^{m} \left(\left(\mathbf{w}^{j} \right)^{T} \mathbf{x}^{i} - y_{ij} \right)^{2} + \frac{\lambda}{2} \sum_{i=1}^{m} \sum_{k=1}^{K} \left(x_{k}^{i} \right)^{2}$

Simultaneously solve with $x_0^i = 1$

$$min_{w^{j},j=1...u,x^{i},i=1...m}\frac{1}{2}\sum_{j=1}^{u}\sum_{i=1:r_{ij}=1}^{m}\left(\left(w^{j}\right)^{T}x^{i}-y_{ij}\right)^{2}+\frac{\lambda}{2}\sum_{j=1}^{u}\sum_{k=1}^{K}\left(w_{k}^{j}\right)^{2}+\frac{\lambda}{2}\sum_{i=1}^{m}\sum_{k=1}^{K}\left(x_{k}^{i}\right)^{2}$$

Optimization Algorithm

- Initialize (to small random values) x^i , $i = 1 \dots m$ and w^j , $j = 1 \dots u$
- Minimize the objective through gradient descent over the objective function
 - Multiple Iterations
- Solve for unknown movie ratings!

What can we do with this?

- Why is it called collaborative filtering?
- We can rank the movies that were not ranked by a user
- We can also identify similar movies
 - Nearest neighbors over x^i
- Or similar users
 - Nearest neighbors over w^j
- Or identify popular trends of movies
 - Average movie ratings across all users

Practical issues

- Normalization of means
- Different regularization parameters for movies and users
- Concept drift
 - Users can change over time
- Addition of a user?
- Addition of a movie?
- Non-linear behavior?
- How should we choose "K"?
 - Have features that are given by the users
 - And other features too

Hybrid Approaches

 Basilico, Justin, and Thomas Hofmann. 2004. "Unifying Collaborative and Content-Based Filtering." In Proceedings of the Twenty-First International Conference on Machine Learning, 9 – . ICML '04. New York, NY, USA: ACM. doi:10.1145/1015330.1015394.

Matrix Completion

- This problem is also called matrix completion
- Low rank matrix completion

 $min_X rank(X)$

Such that:

 $X_{ij} = M_{ij} \forall (i, j) with r_{ij} = 1$

- Applications
 - Collaborative Filtering
 - System Identification

https://en.wikipedia.org/wiki/Matrix_completion

CIS 621: Machine Learning

 Abernethy, Jacob, Francis Bach, Theodoros Evgeniou, and Jean-Philippe Vert. 2009. "A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization." J. Mach. Learn. Res. 10 (June): 803–26.

Required Reading

- Slides adapted from Dr. Andrew Ng's videos on Recommender Systems
- <u>https://www.youtube.com/playlist?list=PL_np</u>
 <u>Y1DYXHPT-3dorG7Em6d18P4JRFDvH</u>

Collaborative Filtering in Python

- Spark-MLIB
- Others

We want to make a machine that will be proud of us.

- Danny Hillis

CIS 621: Machine Learning