EECE 513: Error Resilient
Computer Systems

Wrapup or Synthesis
“The last lecture”



Basic concepts recap

Fault = Error = Failure progression

Terms/Definitions of Reliability, Availability,
Maintainability and Safety

Error detection, error recovery and avoidance

Coverage and it’s importance



Fault Models: Recap

* Fault Models are very important
— What ?
— When ?
— Where ?

* Faults can occur at multiple layers of the
system stack (both h/w and s/w)

— Tradeoff between fault masking and latency.
Lower levels have lower latency but less masking.



Redundancy: Recap

Parallel and Series Reliability
Non-parallel and non-series reliability
Impact of coverage

Standby redundancy versus series-parallel



Redundancy: Continued

* Exponential failure distributions and bathtub
curve (constant failure rate during lifetime)

* TMR can increase reliability for short-term
missions, but not long-term missions

— Need TMR Simplex for long-term missions

e Voter can be a source of unreliability in TMR



Architecture-level Fault tolerance

* High-reliability systems use a wide array of
techniques for redundancy

 Commodity systems mostly use ECC/Parity

e ECCis not free — upto 25% performance
degradation, also area/power overheads
— But can substantially improve memory reliabiity
— Chipkill ECC needed for memory module failures



Software FT - 1

e Software faults cannot be managed by simple
replication as they may affect all replicas

* But majority of S/W faults are Heisenbugs
[Gray’87]
— Process pairs may be able to detect many of them
in the Tandem Guradian System [Lee’93]

— Refuted by later studies involving open-source
software [Chen’99]



Software FT - 2

Multi-version software may alleviate many bugs:
— N-version programming

— Recovery Blocks

— N-Self-Checking Programming

Mathematical model to show that for commodity
s/w development, cost/benefit ratio is weighed
more towards single-version software

Robust data structures with redundant links etc.



Fault Injection

* Act of systematically perturbing program’s
execution to emulate h/w and s/w faults

* Needs to be systematic, reproducible and
representative (also efficient if possible)

* Can be done at multiple levels, from h/w through
pins or s/w emulated fault injection (SWIFI)

— LLFI: Example of a compiler-driven SWIFI technique



Checkpointing and Recovery

Efficient mechanisms to save and restore state

Checkpointing each process individually in a parallel
system can lead to inconsistent checkpoints

Coordinated checkpointing the de-facto approach
[Toueg et al] that solves the consistency problem

Asynchronous checkpoints need to log messages: Can
result in cascading roll-backs in worst case



Distributed Systems - 1

* Family of Broadcast algorithms
— Reliable
— FIFO
— Causal
— Atomic

* Can build higher level broadcasts using lower-
level ones. Reliable broadcast can be
iImplemented using sends and receives



Distributed Systems - 2

* Distributed systems can have Byzantine faults where
anything is possible in the behavior of the program

 Agreement: Multiple nodes need to agree on common
value (related to interactive consistency/consensus)

— Cannot achieve agreement with more than 1/3"9 of nodes
experiencing Byzantine faults

e Byzantine fault-tolerance algorithms perform many
rounds of message exchanges -> high overheads

— Message authentication can drastically reduce this



Replication

* Replica management: Optimistic/Pessimistic
* CAP Theorem

* Three types of voting
— Weighted: (r+w>v, and w>v/2)
— Tree based (quorum on each level)

— Dynamic voting: Keep track of no of nodes in
partition (SC). Tricky to merge partitions

— Vote assignment and reassignment techniques



Empirical Studies

* Web Applications increasing in complexity

 Empirical studies of Web App Reliability
— Console error messages
— Bug Reports

— StackOverflow reports

 DOM-related errors were a major concern



Closing thoughts

* | hope you had fun in this course, and that you
learned something ©

* Please complete the teaching evaluations

* TwWo announcements:

— Project Demoes next week (April 5" and 7t")
— Take home Final Exam: April 13t to April 15t



