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Internal stability

Definition
A system is internally stable if for all initial conditions, and all bounded signals
injected at any place in the system, all states remain bounded for all future
time.

G(s)

K(s) +

+
y

−
ru

v

[
y
u

]
=

[
N11(s) N12(s)
N21(s) N22(s)

] [
v
r

]

Are all four transfer functions stable?
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MIMO concepts: transfer function matrices

y(s) =



y1(s)
...

yny (s)


 = G(s)u(s) =



G11(s) . . . G1nu(s)
...

...
Gny1(s) . . . Gnynu(s)






u1(s)
...

unu(s)




G(s) =



G11(s) . . . G1nu(s)
...

...
Gny1(s) . . . Gnynu(s)


 =




b11(s)
a11(s)

. . .
b1nu (s)

a1nu (s)

...
...

bny1(s)

any1(s)
. . .

bnynu (s)

anynu (s)




= C(sI −A)−1B +D =

[
A B

C D

]
,

with A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, D ∈ Rny×nu .
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MIMO block diagrams

Non-commutative

G1(s) G2(s) 6= G2(s) G1(s)

“Push-through” rule

G(s)+ + K(s) +

d

y u

z

v r

−

GK(I +GK)−1 = G(I +KG)−1K = (I +GK)−1GK
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MIMO sensitivity and complementary sensitivity functions

G(s)+ + K(s) +

d

y u

z

v r

−

y = (I +GK)−1GK︸ ︷︷ ︸
To

r + (I +GK)−1Gz + (I +GK)−1

︸ ︷︷ ︸
So

d

u = (I +KG)−1Kr + (I +KG)−1

︸ ︷︷ ︸
Si

z − (I +KG)−1Kd

v = (I +KG)−1Kr − (I +KG)−1KG︸ ︷︷ ︸
Ti

z − (I +KG)−1Kd
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Internal stability

G(s)

K(s) +

+
y

−
ru

v

[
y
u

]
=

[
N11(s) N12(s)
N21(s) N22(s)

] [
v
r

]
=

[
So(s)G(s) To(s)
−Ti(s) Si(s)K(s)

] [
v
r

]

(So = (I + GK)−1 ∈ Cny×ny , Si = (I + KG)−1 ∈ Cnu×nu )

Internally stable ⇐⇒ T (s), G(s)So(s) and K(s)So(s) stable.

Or, equivalently,:

Internally stable ⇐⇒ So(s) stable and no RHP cancellations in
G(s)K(s). (minimal realisations of GK & KG con-

tain all RHP poles).
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Internal stability

Consequences:

If G(s) has a RHP-zero at z then (if internally stable),

Lo(s) = G(s)K(s)
To(s) = G(s)K(s)(I −G(s)K(s))−1

So(s)G(s) = (I +G(s)K(s))−1G(s)
Li(s) = K(s)G(s))
Ti(s) = K(s)G(s)(I +K(s)G(s))−1





have a RHP-zero at z.

Feedback will not move (or remove) the RHP-zero from the closed-loop
transfer functions.

2016-4-19 8.7

Internal stability

Consequences:

If G(s) has a RHP-pole at p then (if internally stable),

Lo(s) = G(s)K(s)
Li(s) = K(s)G(s))

}
have a RHP-pole at p,

So(s) = (I +G(s)K(s))−1

K(s)So(s) = K(s)(I +G(s)K(s))−1

Si(s) = (I +K(s)G(s))−1



 have a RHP-zero at p.
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Stabilizing controllers

G(s)

K(s) +

+
y

−
ru

v [
y
u

]
=

[
SoG To

Ti SiK

] [
v
r

]

Stable plant case:

Define:

Q(s) = K(s)(I +G(s)K(s))−1

Then,

SoG = (I +GK)−1G = (I −GQ)G
To = GK(I +GK)−1 = GQ
Ti = KG(I +KG)−1 = QG
SiK = (I +KG)−1K = Q





are stable if Q is stable.
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Stabilizing controllers

G(s)

K(s) +

+
y

−
ru

v [
y
u

]
=

[
SoG To

Ti SiK

] [
v
r

]

Stable plant case:

The converse is true:

For every stabilizing controller K(s),

Q(s) = K(s)(I +G(s)K(s))−1, is also stable.

This is a parameterisation of all stabilizing controllers.

Q-parameterisation or Youla parametrisation.
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Internal model control (IMC)

G(s)+

Ĝ(s)+

Q(s) +

K(s)

ru

d

y

−

−

Assume that G(s) is stable and a perfect model: G(s) = Ĝ(s)

y = d+Gu = GQ︸︷︷︸
To

r + (I −GQ)︸ ︷︷ ︸
So

d

u =
[
(I −QG)−1Q −(I −QG)−1Q

] [r
y

]
=
[
K −K

] [r
y

]
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IMC design (for stable G(s))

Q = K(I +GK)−1, K = (I −QG)−1Q

Closed-loop in linear in Q:

T (s) = G(s)Q(s)

Design approach:

Q(s) = G(s)−1Tideal(s)

or if G(s) = GMP(s)GNMP(s), Q(s) = GMP(s)
−1Tideal(s).

I Relative degree of Tideal(s) ≥ relative degree of GMP(s) makes Q(s) proper.

I Cannot invert non-minimum phase parts of G(s).
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IMC design example

G(s) =
5

(1 + 5s)

(1− s/5)
(1 + s/25)

=
5

(1 + 5s)

(1 + s/5)

(1 + s/25)︸ ︷︷ ︸
GMP(s)

(1− s/5)
(1 + s/5)︸ ︷︷ ︸
GNMP(s)

Magnitude

G(jω)

GMP(jω)
GNMP(jω)

0.1

1

10

log ω (rad/sec)
0.1 1 10

Phase (deg.)

G(jω)

GMP(jω)

GNMP(jω)

−270

−180

−90

0 log ω (rad/sec)
0.1 1 10
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IMC design example

Select a desired closed-loop transfer function:

Tideal(s) =
ω2
c

(s2 +
√
2ωcs+ ω2

c )
, ωc = 2.5, Sideal(s) = 1− Tideal(s).

Magnitude

Sideal(jω)
Tideal(jω)

0.01

0.1

1

2
log ω
(rad/sec)

0.1 1 10
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IMC design example

Invert GMP(s) to get Q(s).

Q(s) = GMP(s)
−1Tideal(s) =

(1 + 5s)

5

(1 + s/25)

(1 + s/5)

ω2
c

(s2 +
√
2ωcs+ ω2

c )

The actual closed-loop, T (s), is:

T (s) = G(s)Q(s) = GNMP(s)Tideal(s) =
(1− s/5)
(1 + s/5)

ω2
c

(s2 +
√
2ωcs+ ω2

c )
.

Magnitude

Sideal(jω)
Tideal(jω)

Tactual(jω)

Sactual(jω)

0.01

0.1

1

2
log ω
(rad/sec)

0.1 1 10
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IMC design example

Controller: K(s) = (I −Q(s)G(s))−1Q(s) (5th order controller)

Magnitude

G(jω)

L(jω)

K(jω)

0.1

1

10

log ω (rad/sec)
0.1 1 10

Phase (deg.)

G(jω)

L(jω)
K(jω)

−270

−180

−90

0 log ω (rad/sec)
0.1 1 10

GM

PM
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IMC design example

Closed-loop unit step responses:

yideal(t)

yactual(t)

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

time (sec)

1.0 2.0 3.0 4.0

2016-4-19 8.17

IMC implementation

G(s) K(s) +
y u r

−

Or ...

G(s)+

Ĝ(s)+

Q(s) +
ru

d

y

−

−
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MIMO Nyquist stability analysis

For a minimal L(s),

L(s)

I

+
ry

−

real

imag

R = ∞

r = ε

D

Closed-loop exponential stability

If and only if,

i) det(I + L(s)) 6= 0, for all s ∈ D
ii) The number of CCW encirclements of the origin by det(I + L(s)), as s

traverses the boundary of D, is equal to the number of unstable poles in
L(s).
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Small gain theorem

M1(s)

M2(s) +

+
y1

−
v2y2

v1

A sufficient condition for stability

Given M1(s) and M2(s) stable and minimal with,

‖M1(s)‖ = γ1 and ‖M2(s)‖ = γ2

If γ1γ2 < 1 then
then the closed-loop interconnection is stable.

This holds for any induced norm (with the same norm for input and output
signals).
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H∞ norm

The H∞ norm is a measure of the “size” or “gain” of a system.

If y(s) = G(s)u(s) (and stable) then,

‖G(s)‖H∞ := sup
u(s) 6=0

‖y(s)‖2
‖u(s)‖2

(induced norm with the space)

= sup
u(s)6=0

(
1

2π

∫ ∞

−∞
y(jω)T y(jω)dω

)1/2

(
1

2π

∫ ∞

−∞
u(jω)Tu(jω)dω

)1/2

= max
ω

σ (G(jω)) = ‖G(s)‖∞ (alternative notation)

H∞ is the set of stable, H∞-norm bounded transfer functions.
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H2 norm

Another measure of the “size” or “gain” of a system.

‖G(s)‖H2 :=

(
1

2π

∫ ∞

−∞
trace (G(jω)∗G(jω)) dω

)1/2

The integrand is the Frobenius norm squared of the frequency response:

trace (G(jω)∗G(jω)) =
∑

i,j

|Gij(jω)|2 = ‖G(jω)‖2F .

Via Parseval’s theorem:

‖G(s)‖H2 = ‖g(t)‖H2 =

(∫ ∞

0

trace
(
g(τ)T g(τ)

)
dτ

)1/2
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H2 norm

For state-space representations:

‖G(s)‖2H2
=

1

2π

∫ ∞

−∞
trace (G(jω)∗G(jω)) dω

=

∫ ∞

0

trace
(
BT eA

T τCTCeAτB
)
dτ

= trace(BTWoB) (Wo : observability Grammian)

= trace(CWcC
T ) (Wc : controllability Grammian)

(writing ‖G(s)‖2H2
avoids square roots)
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Nominal performance norm tests

N(s)
we

‖N(s)‖H2
< 1 implies:

I If w(t) = δ(t), then ‖e(t)‖2 < 1.

I If ‖w(t)‖2 < 1, then max
t
|e(t)| < 1.

I If w(t) is unit variance white noise, the var(e(t)) < 1.

‖N(s)‖H∞ < 1 implies:

I If w(t) = sin(ωt) then, max
t
|e(t)| < 1.

I If ‖w(t)‖2 < 1 then, ‖e(t)‖2 < 1.
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System norm comparison

N(s)
we

H2 norm

I Useful nominal performance measure.

I Linear quadratic (LQ) design methods use this norm.

I Minimizes “average” errors.

H∞ norm

I Useful nominal performance measure.

I Minimizes “worst-case” errors.

I Induced norm: small-gain applies.

I Very useful for robustness analysis.
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Notes and references

Skogestad & Postlethwaite (2nd Ed.)

Internal stability: section 4.7

Stabilizing controllers: section 4.8

Stability analysis: section 4.9

System norms: section 4.10

IMC design

Robust Process Control, Manfred Morari & Evanghelos Zafiriou, Prentice-Hall,
1989. (Chapters 3–6).

MIMO Nyquist criterion

“On the Generalized Nyquist Stability Criterion,” C.A. Desoer and Y.-T. Wang,
IEEE Trans. Auto. Control, v. 25, no. 2, pp. 187–196, 1980.
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