
Operating Systems
Introduction

Spring 2015
Francesco Fontanella

Francesco Fontanella, Operating Systems
Spring 2016 2

Instructor
Francesco Fontanella

■ E-mail:

■ Phone: (+39) 0776 2993382

■ Office hours:

– Thursday 11:00-13:00
– on appointment (via e-mail)

■ Address: room 20

Francesco Fontanella, Operating Systems
Spring 2016 3

E-mails

■ When you need to send me an e-mail:

Francesco Fontanella, Operating Systems
Spring 2016 4

Course site

■ You can find all course stuff on the
Piazza site of the course:
https://piazza.com/unicas.it/spring2016/os30182/home

■ Piazza also contains a forum, for
student collaboration

■ You can also post question to the
instructor

https://piazza.com/unicas.it/spring2016/os30182/home

Francesco Fontanella, Operating Systems
Spring 2016 5

Course organization

■ Class lessons
–Monday: 11.00 – 13.00 (room 1N.4)
–Thursday: 9.00 – 11.00 (room 1N.4)

■ Lab:
–Tuesday 15.00 - 18.00 (room 1.4)

Francesco Fontanella, Operating Systems
Spring 2016 6

Exam

■ Programming practice exam:
– 50% of grading;

■ Written exam:
– 40% of grading

Francesco Fontanella, Operating Systems
Spring 2016 7

Homework

■ Every week

■ Programming assignments

■ Submission via dropbox

■ 10% of grading

Francesco Fontanella, Operating Systems
Spring 2016 8

Course materials
■ Textbooks:

– “Operating Systems, Internals and priniciples”, W.
STALLINGS, Perason

– “Operating Systems concept and examples” (8th
ed.), A. SILBERSCHATZ, P.B. GALVIN, G. GAGNE,
Pearson.

– “Modern operating system”, (4th ed.), A.S.
TANENBAUM, H. BOS, Pearson

– “Understanding the Linux kernel”, (3rd ed.) di D.P.
Bovet e M. Cesati.

■ Lesson slides and some instructor notes

Francesco Fontanella, Operating Systems
Spring 2016 10

Von Neumann's Model

Input/Output
Units

Control Unit

Aritmetic-Logic
Unit (ALU)

instructions

data
Central Unit

Memory Unit

Francesco Fontanella, Operating Systems
Spring 2016 11

Modern Computer Systems
■ Von Neumann Model is functionally

correct, but very simple.

■ Nowadays it exists:
–Different mass storage, even very

different from each other;
–Many types of peripherical devices

Francesco Fontanella, Operating Systems
Spring 2016 12

■ Peripherical devices offer low level
service

■ Writing software for managing these
devices requires a deep knowledge on
how they works

■ Hardware architectures may vary a lot

Francesco Fontanella, Operating Systems
Spring 2016 13

MEMORY

CPU
Disk

controller
USB

controller
Graphic

card

disks

Francesco Fontanella, Operating Systems
Spring 2016 15

Operating System

The Operating System

Francesco Fontanella, Operating Systems
Spring 2016 16

Operating system: two definitions

■ Extended machine
– hardware abstraction layer,
– turns hardware into something that

application programmers can easily use
– Top-down perpesctive

■ Resource manager
– OS manages the available computer's

resources, e.g. CPU time, memory space,
etc.

– Bottom-up perspective

Francesco Fontanella, Operating Systems
Spring 2016 20

Operating System ZOO

■ Many types of operating systems:

–Mainframe/ server

–Smartphone

–Embedded systems

–Wireless sensor networks

–Real-time

–Smart card

Francesco Fontanella, Operating Systems
Spring 2016 21

■ Mainframe / Server:
– High parallelism
– Huge I/O workloads I/O (network,

disks, etc,)
– Example: financial transactions, e-

commerce sites, booking and billing
systems, etc.

■ Smartphone
– Little memory (both RAM and storage)
– Energy efficiency problems

Francesco Fontanella, Operating Systems
Spring 2016 22

Embedded systems
■ Developed for managing single

devices (TV, motor controller, etc.)

■ On firmware

■ Installed applications are a-priori
known

■ No protection

■ Many of them are real-time

■ Examples: QNX, VxWorks

Francesco Fontanella, Operating Systems
Spring 2016 23

Wireless Sensors

■ Wireless sensor (WS) networks can
be used in many scenarios:
environmental monitoring, battle fields,
etc.

Francesco Fontanella, Operating Systems
Spring 2016 24

■ A WS is a very little computer: CPU, RAM,
ROM, I/O (sensors, wireless
communications)

■ The OS must :
– Be as much as possible simple
– Consume as low as possible energy

■ Example: TinyOS

Francesco Fontanella, Operating Systems
Spring 2016 25

Real Time
■ In these OS time is a key issue

■ Actions must be accomplished within
precise time limits. Ex: industrial
production (car welding)

■ Also in this case applications are a-
priori known: the protection problem is
much simpler.

Francesco Fontanella, Operating Systems
Spring 2016 26

■ Hard real-time systems: the action
absolutely must occur within a time
range. Missing the limit is harmful.

■ Soft real-time systems: deadline can
be sometime missed (it should be
avoided because it represents a
performance decay).

Francesco Fontanella, Operating Systems
Spring 2016 27

Smart Cards
■ Modern smart cards are CPU equipped.
■ Strong limits for memory (very little) and I/O

(slow)
■ Small processing power
■ Very simple (some have a single function)
■ Most are proprietary
■ Recently, JavaCard: OS is a JVM (Java

virtual machine), applications are applets
(easily portable)

http://en.wikipedia.org/wiki/Firmware

Francesco Fontanella, Operating Systems
Spring 2016

OS evolution

■ OS evolution is strongly tied to
hardware evolution:

–Hardware technology advances push
OS evolution

–SO designers drive hardware
evolution. Examples: interrupts,
memory protection, virtual memory

http://en.wikipedia.org/wiki/Wireless_sensor_network

Francesco Fontanella, Operating Systems
Spring 2016

Earliest Computers

■ NO operating systems!

■ Programmers interacted directly with the
hardware

■ Computers ran from a console with
display lights, toggle switches, some
form of input device, and a printer

■ One user at a time (serial access)

http://www.tinyos.net/

Francesco Fontanella, Operating Systems
Spring 2016

Problems

■ Scheduling:
–hardcopy sign-up sheet for time slots
– wasted (very) expensive CPU time

■ Setup time:
–Setting up a program run (named job)

needed a lot of time
– Even more wasted time

Francesco Fontanella, Operating Systems
Spring 2016

ENIAC

Programmers at ENIAC main control panel
http://en.wikipedia.org/wiki/ENIAC

Francesco Fontanella, Operating Systems
Spring 2015

Batch systems

■ Monitor (the first OS):
– No CPU direct access
– jobs are batched together on an

input device
–Monitor copies job from I/O devices to

central memory and gives control to
the job

–At the end the job gives the control
back to the monitor

http://en.wikipedia.org/wiki/Java_Card

Francesco Fontanella, Operating Systems
Spring 2015

■ Monitor is always
resident in main memory

■ It is loaded at the start up
(computer turned on)

I/O management

Control Language
interpreter

User program(s)

Jobs managementmonitor

Francesco Fontanella, Operating Systems
Spring 2016 36

■ I/O devices are very slow

■ CPU must wait I/O instruction
completion

■ CPU may be often idle.

■ Example: database processing

Read data from I/O 10 μs

100 CPU instructions 1 μs

Write data to I/O 10 μs
CPU utilization
1 (CPU) / 21 (I/O) ~ 5%

Multiprogramming

Francesco Fontanella, Operating Systems
Spring 2016 37

Uniprogramming

Run
A I/O wait

Run
A … A ends

Run
B I/O wait

Run
B …

time

Run
A I/O wait

Run
A

Run
B I/O wait

Run
B

time

Multiprogramming

Francesco Fontanella, Operating Systems
Spring 2016 38

Monitor

process 1

process 2

process 3

.

.

.

■ In main memory:
– all running programs
– the monitor

■ Multiprogramming is also
known as multitasking

■ a program in execution is
named process

Francesco Fontanella, Operating Systems
Spring 2016 39

■ With multiprogramming new
problems arise:
– Memory management:

allocation/deallocation, protection
–CPU scheduling: choice among

more jobs ready to run
–I/O management:

allocation/deallocation, concurrent
access

Francesco Fontanella, Operating Systems
Spring 2016 40

Time-sharing
■ Human beings are much more

slower than CPUs

■ Time-sharing systems handle
multiple interactive processes/users
(through terminals);

■ CPU time is shared among many
users:
–system clock periodically interrupts

the running process

Francesco Fontanella, Operating Systems
Spring 2016 44

Operating Systems
nowadays

Francesco Fontanella, Operating Systems
Spring 2016 45

Hardware protection

■ Multiprogramming requires protection. You
must avoid that:
– Concurrent processes interfere each

other. Example:
• process A writes into the memory of the

process B
– User processes interfere with the OS

■ You need dedicated hardware

Francesco Fontanella, Operating Systems
Spring 2016 46

kernel/user mode

kernel mode:
– Processes can execute all instructions,

including those which allows the OS to
manage the whole system (privileged
instructions)

User mode
– Processes cannot run privileged

instructions

Francesco Fontanella, Operating Systems
Spring 2016 47

■ The CPU has a "Mode bit" in the
program status register (PSW
register) to distinguish between
kernel/user mode

■ Examples of privileged instruction:
–Interrupt disabling
–Accessing to the I/O port/memory
–Modifying the mode bit

Francesco Fontanella, Operating Systems
Spring 2016 48

Program Status Word

Condition code: stores information about the last
operation performed by the ALU (Ex: >,<,= zero,
overflow, etc.)
Mode: running mode: user mode (1) or kernel
mode (0)
Interrupt Mask: stores the enabled/disabled
interrupts
Interruput code: stores the code of the last
condition/event which caused the last interrupt

Condition Code Mode Interrupt Mask Interrupt Code

Francesco Fontanella, Operating Systems
Spring 2016 49

kernel/user mode

■ At boot time CPU is in kernel mode

■ OS is loaded (bootstrap) and then
executed

■ Before giving the CPU control to user
processes, the OS switches the CPU
in user mode

■ Interrupts automatically switch the
CPU mode kernel

Francesco Fontanella, Operating Systems
Spring 2016 50

CPU State

■ CPUs have internal registers:
– General-purpose registers (GPRs): can

be modified by programs and OS (program-
accessible registers), and may contain:
data, addresses, stack pointers, etc.

– Control registers: PSW, Program Counter,
etc.

■ The values contained in these registers
identify the (so called):

CPU state

Francesco Fontanella, Operating Systems
Spring 2015 51

Program Status Word

Francesco Fontanella, Operating Systems
Spring 2016 52

■ You can imagine the set of values of
the CPU registers like a snapshot: they
exactly represent what the CPU was
doing at the moment they was stored

■ OS can stop/restart any running
program by storing/restoring these
register values

Francesco Fontanella, Operating Systems
Spring 2016 53

Stop
CPU

General
purpose
registers

control
register

OS

User program(s)

RAM

register values

Francesco Fontanella, Operating Systems
Spring 2016 54

Restart
CPU

General
purpose
registers

control
register

OS

User program(s)

RAM

 register values

Francesco Fontanella, Operating Systems
Spring 2016 57

X86 Registers

EFLAGS

EIP

Francesco Fontanella, Operating Systems
Spring 2016 58

EFLAGS register

Francesco Fontanella, Operating Systems
Spring 2016 59

EIP register

■ EIP register contains the address of the next
instruction to be executed (it is the program
counter register of the INTEL architecture)

■ Its value can be modified, in two ways:
– Automatically incremented (by the hardware)

during the execution of the current instruction
– by control instructions:

• JMP, Jxx, CALL, RET, nRET, IRET,

Francesco Fontanella, Operating Systems
Spring 2016 60

mov <reg>,<reg>
mov <reg>,<mem>
mov <mem>,<reg>

push <reg32>
push <mem>

pop <reg32>
pop <mem>

X86 Instructions (assembly)

add <reg>,<reg>
add <reg>,<mem>

sub <reg>,<reg>
sub <reg>,<mem>

inc <reg>
inc <mem>

http://www.cs.virginia.edu/~evans/cs216/guides/x86.htm
l

Francesco Fontanella, Operating Systems
Spring 2016 61

Interrupts and traps

■ They allow OS to stop the normal fetch-
execute cycle of the CPU

■ The OS gets the control over the CPU to
stop the running program

■ Always in kernel mode

■ Either hardware (interrupts) or software
(traps)

■ Cause the execution of OS code (handlers)

Francesco Fontanella, Operating Systems
Spring 2016 62

Interrupt vs trap

Interrupt
■ asincronous hardware event, generated by

– I/O devices (disks, keyboards, mouse, etc)
– system clocks (time quantum expired)

Trap
■ sincronous software event, generated by

program in execution :
– Programming errors: Division by zero, memory

addressing errors
– Requests of service to the OS (system calls)

Francesco Fontanella, Operating Systems
Spring 2016 63

Interrupt

User process Interrupt
Handler

Interrupt i
i+1

Francesco Fontanella, Operating Systems
Spring 2016 64

“Event Driven” OS

■ OS intervenes when certain events
occur:
–interrupts by peripheral devices

(disks, mouse, keyboard, clock, etc)
–traps by the executing program (errors

or syscalls) System calls or program
expections by user programs

Francesco Fontanella, Operating Systems
Spring 2016

OS "Interrupt Driven"
■ After every instruction the CPU

check if any interrupt occured

while (fetch next instruction) {
 run instruction;
 if (interrupt) {
 save EIP and EFLAGS // user mode
 jump to the interrupt handler // kernel mode

restore EIP // user mode
 }
}

Francesco Fontanella, Operating Systems
Spring 2016

Questions

1) How does CPU check if an interrupt
has occurred?

2) How does CPU know which
instruction to execute next?

3) What does the interrupt handler do?

Francesco Fontanella, Operating Systems
Spring 2016

Answer 1
■ (Modern) CPUs have a special line

connected to all the I/O devices
■ After every instruction, the CPU

checks the line
■ It the line is up, the CPU (its hardware):

– interrupts its normal execution cycle
– Automatically saves the values of

EIP and EFLAGS registers
X86
CPU

INTR

Francesco Fontanella, Operating Systems
Spring 2016

■ Each device is assigned an interrupt number

■ At boot time the OS loads in memory the Interrupt
Description Table (IDT), also called Interruput
vector

■ IDT entries point to an interrupt handler:
– a special routine able to manage the device that

generated the interrupt

■ In the x86 CPU the OS can use the instruction
lidt to load in the IDT register the address and
the size of the IDT

Answer 2

Francesco Fontanella, Operating Systems
Spring 2016

Programmable Interrupt Circuit (PIC)

■ I/O devices trigger interrupt requests to
the PIC

■ The PIC:

–associates at each device an
interrupt request (IRQ) number

–activates the INTR of the CPU

Francesco Fontanella, Operating Systems
Spring 2016 71

Francesco Fontanella, Operating Systems
Spring 2016 72

Interrupt Descriptor Table (IDT)

■ In the x86 architecture implements the interrupt vector

■ It may contain up to 256 entry (8 bytes each). The first 32
are reserved to the CPU

■ It can be anywhere in main memory. The address of the first
entry is in the IDTR register

■ For each device, the IDT makes a connection between the
IRQ number (IRQ#) of the device and the instructions to
execute for managing its interrupt requests (the handler)

Handler's address = IDT[IRQ#]

Francesco Fontanella, Operating Systems
Spring 2016 74

Interrupt mechanism

■ If the INTR line is up, the CPU (automatically):

– Stores on the stack the current values of the
EIP and EFLAGS registers

– Switch in kernel mode
– Loads from the data bus IRQ# (from the PIC)
– Loads in the EIP the address stored at:

IDTR+8*IRQ#

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Francesco Fontanella, Operating Systems
Spring 2016 75

PIC

INTR
CPU

IDTR

IRQ#

RAM
IDT

Interrupt
handler

0

255

IRQs

In practice the CPU automatically jumps to (execute)
the handler of the device which generated the
interrupt

DATA BUS

IRQ#

Francesco Fontanella, Operating Systems
Spring 2016 76

Interrupt Handler

■ What does the interrupt handler do?
■ Usually, the handler:

– Uses an assembly routine to save the register
values (the context)

– Calls a routine (written in C) to manage the
interrupt. Example: read/write of the device
registers

– Restores the context of the interrupted process
and give the control back to it or (sometimes) call
the scheduler

Francesco Fontanella, Operating Systems
Spring 2016 78

Linux: the save_ALL macro
cld
push %es
push %ds
pushl %eax
pushl %ebp
pushl %edi
pushl %esi
pushl %edx
pushl %ecx
pushl %ebx
movl $ _ _USER_DS,%edx
movl %edx,%ds
movl %edx,%es

■ Linux interrupt
handlers start by
calling this macro

■ The instruction
push %reg
saves on the
stack the value of
the register %reg

Francesco Fontanella, Operating Systems
Spring 2016 79

Keyboard interrupt handler (C code)

void irq_handler(int irq, ...)
{

 static unsigned char scancode;
 unsigned char status;

 /* Read keyboard status */
 status = inb(0x64);
 scancode = inb(0x60);

.

.

.

}

Francesco Fontanella, Operating Systems
Spring 2016

Interrupt management: overview

■ When a device interrupt occurs:
– The interrupt request is sent to CPU (via the INTR line)
– The CPU

• Stops the running process
• Jump to the address containing the routine for

managing that interrupt (interrupt handler)
– L'interrupt handler

• manage the interrupt
• Give the control back to the stopped process (or to

another process)
• The interrupted process resume its computation, as if

nothing ever happened

H
a
rd

w
a
re

S
o
ft
w
a
re

Francesco Fontanella, Operating Systems
Spring 2016

■ The change of the value EIP register imply a
jump to the code of the handler

■ At this point:
– the CPU resume its normal fetch-execute

cycle
– The (OS) handler takes the control of the

CPU

Interrupt management: details

Francesco Fontanella, Operating Systems
Spring 2016 82

Multiple interrupts

■ During the management of an
interrupt a new interrupt from a
different device may occur;

■ Two possible solutions:
–Interrupt disambling
–Nested interrupts

Francesco Fontanella, Operating Systems
Spring 2016 83

Interrupt disabling

■ When an interrupt is served new
interrupt are (temporarily) ignored
(the IF flag of the EEFLAGS is set
down);

■ The ignored interrupt is pending;

■ interrupts are reenabled after that
the interrupt has been served;

Francesco Fontanella, Operating Systems
Spring 2016 84

Interrupt disabling

■ The CPU then check if a new
interrupt occurred; if so the
corresponding handler is called

■ Simple approach: interrupts are
managed sequentially

■ Does not take into account "time-
critical" conditions

Francesco Fontanella, Operating Systems
Spring 2016 85

User process

Interrupt
Handler

Interrupt
i

i+1 Interrupt
Handler

Francesco Fontanella, Operating Systems
Spring 2016 86

Nested Interrupt

■ Priorities

■ Lower priority interrupts can be stopped
by higher priority interrupts

■ It needs a suitable mechanism for
restore the previous interrupt

■ Faster device (network cards) usually
have higher priority

Francesco Fontanella, Operating Systems
Spring 2016 87

User process

Interrupt
Handler

Interrupt
i

i+1

Interrupt
Handler

Francesco Fontanella, Operating Systems
Spring 2016 89

I/O devices

■ Every I/O device is managed by the
OS through its controller

■ An I/O controller is an electronic
device which accept commands
from the OS and performs the
corresponding action

Francesco Fontanella, Operating Systems
Spring 2015 90

CONTROLLER

control register

status register

 data register

CPU

commands

status

data
DEVICE

signals

DATA

BUS

Francesco Fontanella, Operating Systems
Spring 2016 91

■ Access policies to devices
depends on their controllers

Example
–disk controllers accept one

request at time
–Queuing disk requests is an

OS task

Francesco Fontanella, Operating Systems
Spring 2016 92

■ Three ways to manage the
interaction between OS and I/O
devices:
–Programmed I/O
–Interrupt-Driven I/O
–Direct Memory Access

(DMA)

Francesco Fontanella, Operating Systems
Spring 2016 93

Programmed I/O: input

1) OS loads the input request parameters into the
control register of the controller.

2) The controller starts to execute the request

3) The OS starts a cycle to check the device status
register (busy wait cycle)

4) Once the data are available, the controller:
1) stores them into its own memory buffer
2)uses the status register to inform the OS that the

operation has been completed

5) Finally, the OS copies the data from the controller
buffer to the main memory.

Francesco Fontanella, Operating Systems
Spring 2016 94

Interrupt-Driven I/O: Input
1) OS loads the input request parameters into the control

register of the controller.

2) The controller starts to execute the request

3) The OS assigns the CPU to another process

4) Once the data are available, the controller
1) stores them into its memory buffer
2) generates an interrupt to inform the OS that the

operation has been completed

5) Finally, the OS copies the data from the controller
buffer to the main memory

Francesco Fontanella, Operating Systems
Spring 2016 95

Programmed I/O and
Interrupt-Driven I/O

■ Output operations are quite similar:
1) data are copied into controller buffers
2) Then request parameters are loaded into

controller command registers

■ drawbacks:
– CPU time is wasted for data transferring
– Data throughput depends on the (busy) CPU

Francesco Fontanella, Operating Systems
Spring 2015 96

1) OS loads the input request parameters into the control
register of the controller.

2) The controller starts to execute the request

3) The OS assigns the CPU to another process

4) Once the data are available, the controller
1) stores them directly from/to the main memory
2) generates an interrupt to inform the OS that the

operation has been completed

Direct Memory Access (DMA)

Francesco Fontanella, Operating Systems
Spring 2016 97

Direct Memory Access (DMA)
I/O

 r
eq

u
es

t

in
te

rr
u

p
t

instructions
data

data transferring
DEVICE

CPU

main memory
(RAM)

Francesco Fontanella, Operating Systems
Spring 2016 99

System calls
question

– I/O instructions can executed only in
kernel mode, by the OS. How can user
processes execute I/O operations?

answer
– User processes must request I/O

operations to the OS, through the
system calls (or syscall).

Francesco Fontanella, Operating Systems
Spring 2016 101

■ The set of available syscalls represents
the interface between user processes
(their programmers) and the OS
(services)

■ When a user process needs a service
from the OS, it makes a system call

■ In programming languages, syscalls are
available through routines collected in
libraries

Francesco Fontanella, Operating Systems
Spring 2016 102

■ These libraries are usually provided with
the compiler

■ EXAMPLE (C language)
–printf
–read
–write

Francesco Fontanella, Operating Systems
Spring 2016 103

Application Programming
Interface (API)

■ An API details the set of available functions
(services) provided by the OS

■ APIs are abstractions of the services
provided by the OS

■ APIs make applications hardware
independent

■ API examples:

– API Win32, API POSIX, API JAVA

Francesco Fontanella, Operating Systems
Spring 2016 104

The C standard Library

■ The C standard library has been defined
by International Standard Organizazion
(ISO)

■ It provides and lot of functions
■ The API of the libc is specified by the

header files.
– Example

• <math.h>
• <stdio.h>

Francesco Fontanella, Operating Systems
Spring 2016 105

Syscalls: the mechanism

Francesco Fontanella, Operating Systems
Spring 2016 106

Francesco Fontanella, Operating Systems
Spring 2016 107

System calls: parameter
passing
■ There are three ways to pass

parameters to syscalls:

– CPU registers: it is the simplest one,
but there should be more parameters
than available registers

– a memory block pointed by a CPU
register

– Stack

Francesco Fontanella, Operating Systems
Spring 2016 108

Linux syscalls

1)Syscall number is stored in the eax register

2)Parameters are stored on the stack.

3)The instruction int $=x80 is executed:

● The interrupt vector entry x80 points to the
syscall manager:
syscall manager'address = IDTR+8*x80

4)The syscall manager reads the value
contained in the eax register

Francesco Fontanella, Operating Systems
Spring 2016 109

Sytem calls: example

 count = read(fd, buffer, n)

–count: #bytes actually read

–fd: file descriptor

–buffer: where to copy the data (memory
address)

–n: #bytes to be read

Francesco Fontanella, Operating Systems
Spring 2016 110

eax register

int x80

Francesco Fontanella, Operating Systems
Spring 2016 111

System call handler

■ It is pointed by the entry 128 (0x80 exadecimal) of
the interrupt vector

■ Then it carries out the following actions:
– Saves the CPU registers onto the stack (macro

assembly SAVE_ALL)
– Calls the OS function that implements the action

requested:
call *sys_call_table[%eax]

– CPU registers are restored
– Switch back to user mode

Francesco Fontanella, Operating Systems
Spring 2016 112

System call types

■ Process management

■ File managemet

■ File system and directories

Francesco Fontanella, Operating Systems
Spring 2016 113

Process management
■ pid = fork()

– Creates a (son) process identical to the father
(the caller)

■ pid = waitpid(pid, &statloc, options)
– waits the termination of the son process

■ s = execve(name, argv, environment)
– executes a program

■ exit(status)
– Terminates the current process (the caller)

Francesco Fontanella, Operating Systems
Spring 2016 114

Fork call: example
■ A simple program for generating a son process:

int main()
{
 int pid;
 pid = fork();
 if (pid > 0)
 printf(“father process\n”);
 else if (pid == 0) {
 printf(“son process\n”);
 else printf(“Error!\n”);
}

Francesco Fontanella, Operating Systems
Spring 2016 115

File management
■ fd = open(file, how, …)

– Open a file (read or write)
■ s = close(fd)

– Close a file
■ n = read(fd, buffer, nbytes)

– reads #bytes from file (fd file descriptor) and copies
them to the buffer

■ n = write(fd, buffer, nbytes)
– Writes #bytes to file from the buffer

■ position = lseek(fd, offset, whence);
– Set the file pointer

■ s=stat(name, &buf)
– Status information about a file (name) copied into the

buffer

Francesco Fontanella, Operating Systems
Spring 2016 116

File management: example

■ The following program reads 10 bytes starting from the
50th byte, from a file in the current folder

int main()
{
 int fd;
 char buffer[10];
 int read;
 fd = open(“test.txt”, “r”);
 lseek(fd, 50, SEEK_SET);
 if (read(fd, buffer, 10) != 10)
 printf(“ERROR reading 10 bytes!!!\n”);
}

Francesco Fontanella, Operating Systems
Spring 2016 126

OS structure
■ OS architecture describes the OS components

and how they are connected
■ OS architectures can be very different from each

other
■ Typical OS components:

– Process management (scheduler)
– Memory management (main and secondary)
– I/O device management
– file system
– Etc.

Francesco Fontanella, Operating Systems
Spring 2016 127

■ SO design must consider:
–efficiency
–maintenance
–expandability
–Modularity

■ Often trade-offs are needed. Example:
–Effciency vs modularity

Francesco Fontanella, Operating Systems
Spring 2016 128

■ According to their structure, OS can be
divided into two families:

–systems with a simple structure

–systems with a layer stucture

Francesco Fontanella, Operating Systems
Spring 2016 130

Simple structure: MS-DOS

 ROM BIOS device drivers

MS-DOS device drivers

Resident system programs

User programs

Francesco Fontanella, Operating Systems
Spring 2016 131

MS-DOS
■ Comments

– Interfaces and layers are not well separated
– Applications can directly access to the I/O

devices
– Security issues: wrong (malicious) programs can

crash the system
■ Motivations:

– Designers was limited by the hardware
– 8086, 8088, 80286 did not have kernel/user

mode
– designer first priority was: best functionality with

least possible resources (CPU, RAM and disk)

Francesco Fontanella, Operating Systems
Spring 2016 132

UNIX

■ Simple structure
■ It is divided into two parts:

–kernel
–System programs

■ Motivations
–Also in this case hardware limitations
–However with a more structured

approach

Francesco Fontanella, Operating Systems
Spring 2016 134

UNIX

Kernel

Users

Hardware

Francesco Fontanella, Operating Systems
Spring 2016 135

Layered OS
■ The OS is layer structured
■ Each layer

– Uses lower layers
– offers services to the higher layers

■ Motivations
– the main advantage is modularity

• encapsulation and data hiding
• abstract data types

– Layer structure simplifies: implementation,
debugging, system evolution

Francesco Fontanella, Operating Systems
Spring 2016 136

Francesco Fontanella, Operating Systems
Spring 2016 137

Layer interaction

Implementation

interface

layer N

Implementation

interface

Layer N functions

Layer N-1 functions

Layer N -1

Francesco Fontanella, Operating Systems
Spring 2016 138

examples

■ THE OS (Dijkstra, 1968)
 5) user programs
 4) I/O management
 3) Console device/driver
 2) Memory management
 1) CPU Scheduling
 0) Hardware

■ Venus OS (1970)
 6) user program
 5) Scheduler and drivers
 4) virtual Memory
 3) I/O channels
 2) CPU Scheduling
 1) instruction interpreter
 0) Hardware

Francesco Fontanella, Operating Systems
Spring 2016 139

■ drawbacks
– less efficient

• Each Layer adds overhead
– Layers must be studied carefully

• Functions at layer N must be implemented using only
the services offered by lower layers

• This constraint, sometimesm can be hard to overcome

■ Result
– Modern SO have few (or none) layers

Francesco Fontanella, Operating Systems
Spring 2016 141

Kernel organization
■ three categories

– Monolithic
• A single (and reach) aggregate of procedures,

mutually coordinate
– Micro kernel

• Minimum kernel which provides process
management (scheduler) and message
passing

• client/server paradigm
– Hybrid

• Similar to Micro Kernel, but some components
run in kernel space

Francesco Fontanella, Operating Systems
Spring 2016 142

■ A set of procedures which makes a single
address space

■ Syscalls are implemented through modules
running in kernel mode

■ Monolithic kernel are organized in modules,
but these modules are executed in the same
space

Monolithic kernels

Francesco Fontanella, Operating Systems
Spring 2016 143

Kernel
mode

User program
User
mode

Francesco Fontanella, Operating Systems
Spring 2016 144

■ Efficiency
– High, because routines are highly

coordinated and integrated
■ Modularity

– Modern monolithic kerneIs allow runtime
loading

– Only actually needed modules are in main
memory

– Kernel is easily (and automatically)
extensible

■ Examples
– LINUX, FreeBSD UNIX

Francesco Fontanella, Operating Systems
Spring 2016 145

Linux modules

■ Are portions of software that can be added/discarded
(at runtime) to the kernel

■ Main advantage
– Kernel does not need to be ricompiled

NOTE
modules are not autonome unities: the kernel is still
monolithic!

■ Are portions of software that can be added/discarded
(at runtime) to the kernel

■ Main advantage
– Kernel does not need to be ricompiled

■ Are portions of software that can be added/discarded
(at runtime) to the kernel

■ Main advantage
– Kernel does not need to be ricompiled

■ Are portions of software that can be added/discarded
(at runtime) to the kernel

■ Main advantage
– Kernel does not need to be ricompiled

Francesco Fontanella, Operating Systems
Spring 2016 148

Client/server systems
■ Problem

– Kernel complexity keeps growing

■ Idea!

– Remove from the kernel non essential parts
(services) and implements them as user
processes

■ They implement client-server paradigm

■ microkernel OS examples:

– AIX, BeOS, L4, Mach, Minix, MorphOS, QNX,
RadiOS, VST

Francesco Fontanella, Operating Systems
Spring 2016 149

Microkernel
■ Only manages CPU scheduling e memory

■ message passing
– microkernel delivers messages among

processes

User process File system

Kernel

Client Server

 User mode

 kernel mode

Francesco Fontanella, Operating Systems
Spring 2016 150

Microkernel system calls
■ Only two system calls

– send
– receive

■ Through them you can implement the standard API
for an OS

int open(char* file, ...)
 {
 msg = < OPEN, file, ... >;
 send(msg, file­server);
 fd = receive(file­server);

 return fd;
}

Francesco Fontanella, Operating Systems
Spring 2016 151

Microkernel vantages

■ OS complexity is managed through the
client/server paradigm

■ OS is easily expandable and modifiable
–New services are added as user

processes (no kernel modifications)
–To update a given service: source

code modification are limited to the
service to be updated

Francesco Fontanella, Operating Systems
Spring 2016 152

■ easy porting on different architectures
–Only the (micro)kernel must be

modifed,
–other modules have only to be

recompiled

■ High reliability and self-healing
(repairing)
–If a service (its process) crashes, the

OS can still work
–The service can be restarted

Francesco Fontanella, Operating Systems
Spring 2016 153

Microkernel drawbacks

■ Low efficiency due to communication
overhead

■ Instead of simple (and fast) procedure
calls (like in monolithic kernel) you must
use several (slow) kernel syscalls (send
and receive) for process communication

Francesco Fontanella, Operating Systems
Spring 2016 154

Minix
■ kernel

– Process manager (scheduler) and (hardware)

■ Everything else in user space

Francesco Fontanella, Operating Systems
Spring 2016 155

monolithic vs micro

■ Monolithic
– source code in a single address space:

less complex to be managed
– Easier to design

■ Micro Kernel
– It is used in when failures cannot be

allowed
– Ex. QNX OS it is used for arm robot of the

Space shuttle

Francesco Fontanella, Operating Systems
Spring 2016 156

Hybrid Kernels
■ Are essentially micro kernels
■ For efficiency reasons, they retain some services in

“kernel space “
■ Use message passing for user process

communication (like micro kernel)
■ Examples

– Microsoft Windows NT kernel
– Es. XNU (MAC OS X kernel)

NOTE
hybrid kernels should not be confused with monolithic
kernels which have runtime loadable modules

Francesco Fontanella, Operating Systems
Spring 2016 160

Policies vs mechanisms

■ Policy
– What to do (criteria)

■ Mechanism
– How to do things (implementation)

■ Good practice
– Policies and mechanism must be separated:

implementation choices should not influence
policies (the choice of the criteria for resource
management)

– It is not an easy task

Francesco Fontanella, Operating Systems
Spring 2016 161

■ microkernels
– Kernel only implements mechanism
– Policies are delegated to user space processes

■ Example: MINIX
– Memory manager is a process out of the kernel:

• It manage memory blocks, but can't directly
access to them

• It can only access its own memory area (like
any other process)

– it implements its memory management policy
through kernel syscalls (system tasks)

Francesco Fontanella, Operating Systems
Spring 2016 165

Booting the system

■ During the boot the kernel, or a part of it, is
loaded in main memory (RAM)

■ During the boot it needs to:
– Initialize the kernel data stuctures
– Create at least an user process
– Give the control to the user process created

■ The boot strongly depends on the hardware
(we will refer to 80x86)

Francesco Fontanella, Operating Systems
Spring 2016 166

The first instant

■ Memory is empty!

■ Just turned on, a hardware circuit enables the
RESET pin of the CPU

■ Afterwards, the CPU executes (in real mode) the
instruction at the address:

0xfffffff0

which is memory mapped to an EEPROM
memory (non volatile memory).

■ This memory contains a set of routines called:

Basic Input/Output System (BIOS)

Francesco Fontanella, Operating Systems
Spring 2016 167

The BIOS

■ It is a de facto standard

■ It was the set of software routines for
the I/O management developed for
the operating system CP/M (
Intel 8080 and Zilog Z80)

■ BIOS instructions are executed in
real mode

Francesco Fontanella, Operating Systems
Spring 2016 168

Real address mode

■ It was the operating mode of the (INTEL) CPUs
precedent the 286

■ It has:

– A 20 bit address space (1 MB)

– Direct access to all the address space and all
the peripherical devices

■ It was defined to allow backward compatibility
(before the 286 CPU!)

■ Current processors stil have this operation mode
(x86-64)

Francesco Fontanella, Operating Systems
Spring 2016 171

The boot device

■ After hardware initilization, the BIOS searches
for the boot device

■ Devices are searched by the BIOS according
to a (modifiable) given order

■ Once the boot device has been found, the
BIOS:
– copies the content of the first sector (boot

sector) of this device in RAM memory at
the address 0x00007c00

– Executes the code just loaded:
jmp 0x00007c00

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 74
	Slide 75
	Slide 76
	Slide 78
	Slide 79
	Gestione:Sommario
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 99
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 126
	Slide 127
	Slide 128
	Slide 130
	Slide 131
	Slide 132
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 160
	Slide 161
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 171

