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Instructor
Francesco Fontanella 

■ E-mail: 

■ Phone: (+39) 0776 2993382

■ Office hours:  

– Thursday 11:00-13:00 
– on appointment (via e-mail)

■ Address: room 20
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E-mails

■ When you need to send me an e-mail: 
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Course site

■ You can find all course stuff on the 
Piazza site of the course:
https://piazza.com/unicas.it/spring2016/os30182/home

■ Piazza also contains a forum, for 
student collaboration 

■ You can also post  question to the 
instructor

https://piazza.com/unicas.it/spring2016/os30182/home
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Course organization

■ Class lessons  
–Monday: 11.00 – 13.00 (room 1N.4)
–Thursday:     9.00 – 11.00 (room 1N.4)

■ Lab:
–Tuesday 15.00 -  18.00  (room 1.4)
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Exam

■  Programming practice exam:
– 50% of grading;

■ Written exam:
– 40% of grading
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Homework

■ Every week

■ Programming assignments 

■ Submission via dropbox

■ 10% of grading 
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Course materials
■ Textbooks: 

– “Operating Systems, Internals and priniciples”, W. 
STALLINGS, Perason

– “Operating Systems concept and examples” (8th 
ed.),  A. SILBERSCHATZ, P.B. GALVIN, G. GAGNE, 
Pearson.

– “Modern operating system”, (4th ed.),  A.S. 
TANENBAUM, H. BOS, Pearson

– “Understanding the Linux kernel”, (3rd ed.) di D.P. 
Bovet e M. Cesati.

■ Lesson slides and some instructor notes
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Von Neumann's Model

Input/Output
Units

Control Unit

Aritmetic-Logic 
Unit (ALU)

instructions

data
Central Unit

Memory Unit
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Modern Computer Systems
■ Von Neumann Model is functionally 

correct, but very simple.
 

■ Nowadays it exists: 
–Different mass storage, even very 

different from each other;
–Many types of peripherical devices
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■ Peripherical devices offer low level 
service

■ Writing software for managing these 
devices requires a deep knowledge on 
how they works 

■ Hardware architectures may vary a lot
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MEMORY

CPU
Disk

controller
USB

controller
Graphic 

card

disks
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Operating System

The Operating System
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Operating system: two definitions

■ Extended machine
– hardware abstraction layer, 
– turns hardware into something that 

application programmers can easily use
– Top-down perpesctive

■ Resource manager
– OS manages the available computer's 

resources, e.g. CPU time, memory space, 
etc.

– Bottom-up perspective
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Operating System ZOO

■ Many types of operating systems:

–Mainframe/ server

–Smartphone

–Embedded systems

–Wireless sensor networks

–Real-time 

–Smart card
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■ Mainframe / Server:
– High parallelism 
– Huge I/O workloads  I/O (network, 

disks, etc,)
– Example: financial transactions, e-

commerce sites, booking and billing 
systems, etc.

■ Smartphone
– Little memory (both RAM and storage)
– Energy efficiency problems
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Embedded systems
■ Developed for managing single 

devices  (TV, motor controller, etc.)

■ On  firmware

■ Installed applications are a-priori 
known 

■ No protection

■ Many of them are real-time

■ Examples: QNX, VxWorks
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Wireless Sensors

■ Wireless sensor (WS)  networks can 
be used in many scenarios: 
environmental monitoring, battle fields, 
etc.
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■  A WS is a very little computer: CPU, RAM, 
ROM, I/O (sensors, wireless 
communications)

■  The OS must :
– Be as much  as possible simple
– Consume as low as possible energy

■  Example: TinyOS
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Real Time
■  In these OS time is a key issue

■ Actions must be accomplished within 
precise time limits. Ex: industrial 
production (car welding) 

■ Also in this case applications are a-
priori known: the protection problem is 
much simpler. 
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■  Hard real-time systems: the action 
absolutely must occur within a time 
range. Missing the limit is harmful. 

■ Soft real-time systems: deadline can 
be sometime missed (it should be 
avoided because it represents a 
performance decay).
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Smart Cards
■ Modern smart cards are CPU equipped. 
■ Strong limits for memory (very little) and I/O 

(slow)
■ Small processing power
■ Very simple (some have a single function)
■ Most are proprietary
■ Recently,  JavaCard: OS is a JVM (Java 

virtual machine), applications are applets 
(easily portable)

http://en.wikipedia.org/wiki/Firmware
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OS evolution

■ OS evolution is strongly tied to 
hardware evolution:

–Hardware technology advances  push  
OS evolution

–SO designers  drive hardware 
evolution. Examples: interrupts, 
memory protection, virtual memory

http://en.wikipedia.org/wiki/Wireless_sensor_network
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Earliest Computers

■ NO operating systems!

■ Programmers interacted directly with the 
hardware

■ Computers ran from a console with 
display lights, toggle switches, some 
form of input device, and a printer

■ One user at a time (serial access)

http://www.tinyos.net/
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Problems

■ Scheduling: 
–hardcopy sign-up sheet for time slots
– wasted (very) expensive CPU time

■ Setup time:
–Setting up a program run (named job) 

needed a lot  of time
– Even more wasted time 
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ENIAC

Programmers at ENIAC main control panel
http://en.wikipedia.org/wiki/ENIAC
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Batch systems

■ Monitor (the first OS):
– No CPU direct access
– jobs  are batched together on an 

input device  
–Monitor copies job from I/O devices to 

central memory and gives control to 
the job 

–At the end the job gives the control 
back to the monitor

http://en.wikipedia.org/wiki/Java_Card
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■ Monitor is always 
resident in main memory

■ It is loaded at the start up 
(computer turned on)

I/O management

Control Language 
interpreter

User program(s)

Jobs managementmonitor
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■ I/O devices are very slow

■ CPU must wait I/O instruction 
completion

■ CPU may be often idle.

■ Example: database processing

Read data from I/O 10 μs

100 CPU instructions 1 μs

Write data to I/O 10 μs
CPU utilization 
1 (CPU) / 21 (I/O) ~ 5% 

Multiprogramming 
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Uniprogramming

Run 
A I/O wait

Run 
A           …    A ends

Run 
B I/O wait

Run 
B      …    

time

Run 
A     I/O wait

Run 
A

Run 
B I/O wait

Run 
B

time

Multiprogramming
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Monitor

process 1

process 2

process 3

.

.

.

■ In main memory:
– all running programs 
– the monitor

■ Multiprogramming is also 
known as multitasking

■ a program  in execution is 
named process
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■ With multiprogramming new 
problems arise:
– Memory management: 

allocation/deallocation, protection
–CPU scheduling: choice  among 

more jobs ready to run
–I/O management: 

allocation/deallocation, concurrent 
access 
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Time-sharing 
■ Human beings are much more 

slower than CPUs 

■ Time-sharing systems handle 
multiple interactive processes/users 
(through terminals);

■ CPU time is shared among many 
users:
–system clock periodically interrupts 

the running process
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Operating Systems 
nowadays
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Hardware protection

■ Multiprogramming requires protection. You 
must avoid that:
– Concurrent processes interfere each 

other. Example: 
• process A writes into the memory of the 

process B
– User processes interfere with the OS

■ You need dedicated hardware
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kernel/user mode

kernel mode:
– Processes can execute all instructions, 

including those which allows the OS to 
manage the whole system (privileged 
instructions)

User mode
– Processes cannot run privileged 

instructions 
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■ The CPU has a "Mode bit" in the 
program status register (PSW 
register) to distinguish between 
kernel/user mode

■ Examples of privileged instruction:
–Interrupt disabling 
–Accessing to the I/O port/memory
–Modifying  the mode bit
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Program Status Word

Condition code: stores information about the last 
operation performed by the ALU (Ex: >,<,= zero, 
overflow,  etc.)
Mode: running mode: user mode (1) or kernel 
mode (0)
Interrupt Mask: stores the enabled/disabled 
interrupts 
Interruput code: stores the code of the last  
condition/event which caused the last interrupt

Condition Code Mode Interrupt Mask Interrupt Code
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kernel/user mode

■ At  boot time CPU is in kernel mode

■ OS is loaded (bootstrap) and then 
executed 

■ Before giving the CPU control to user 
processes, the OS switches the CPU 
in user mode

■ Interrupts automatically switch the 
CPU mode kernel
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CPU State

■ CPUs have internal registers:
–  General-purpose registers (GPRs): can 

be modified by programs and OS (program-
accessible registers), and may contain: 
data, addresses, stack pointers,  etc.

– Control registers: PSW, Program Counter, 
etc. 

■ The  values contained in these registers 
identify the (so called):

CPU state
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Program Status Word
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■ You can imagine the set of values  of 
the CPU registers like a snapshot: they 
exactly represent what the CPU was 
doing at the moment they was stored

■ OS can stop/restart any running 
program by storing/restoring these 
register values 
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Stop 
CPU

General 
purpose 
registers

control 
register

OS

User program(s)

RAM

register values
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Restart 
CPU

General 
purpose 
registers

control 
register

OS

User program(s)

RAM

          register values
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X86 Registers

EFLAGS

EIP
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EFLAGS register
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EIP register

■ EIP register contains the address of the next 
instruction to be executed (it is the program 
counter register of the INTEL architecture)

■ Its value can be modified, in two ways:  
– Automatically incremented (by the hardware)  

during the execution of the current instruction
– by control instructions: 

• JMP, Jxx, CALL, RET, nRET, IRET,  
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mov <reg>,<reg>
mov <reg>,<mem>
mov <mem>,<reg>

push <reg32>
push <mem>

pop <reg32>
pop <mem>

X86 Instructions (assembly)

add <reg>,<reg>
add <reg>,<mem>

sub <reg>,<reg>
sub <reg>,<mem>

inc <reg>
inc <mem>

http://www.cs.virginia.edu/~evans/cs216/guides/x86.htm
l
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Interrupts and traps

■ They allow OS to stop the normal fetch-
execute cycle of the CPU

■ The OS  gets the control over the CPU to 
stop the running program

■ Always in kernel mode

■ Either hardware (interrupts) or software 
(traps)

■ Cause the execution of OS code (handlers)
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Interrupt vs trap

Interrupt
■ asincronous hardware event, generated by

– I/O devices (disks, keyboards, mouse, etc)
– system clocks (time quantum expired)

Trap
■ sincronous software event, generated by 

program in execution : 
– Programming errors:  Division by zero, memory 

addressing  errors
– Requests of service  to the OS (system calls)
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Interrupt

User process Interrupt
Handler

Interrupt i
i+1
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“Event Driven” OS

■ OS intervenes when  certain events 
occur:
–interrupts by  peripheral devices  

(disks, mouse, keyboard, clock, etc)
–traps by the executing program (errors 

or syscalls) System calls or program 
expections by user programs
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OS "Interrupt Driven"
■ After every instruction the CPU 

check if any interrupt occured

while (fetch next instruction) {
  run instruction;
  if (interrupt) {
    save EIP and EFLAGS      // user mode 
    jump to the interrupt handler  // kernel mode

restore EIP                    // user mode
  }
}
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Questions

1) How does  CPU check if an interrupt 
has occurred?

2) How does CPU know which 
instruction to execute next?

3) What does the interrupt handler do?
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Answer 1
■ (Modern) CPUs have a special line 

connected to all the I/O devices
■ After every instruction,  the CPU 

checks the line
■ It the line is up, the CPU (its hardware):

– interrupts its normal execution cycle
– Automatically saves the values of 

EIP and EFLAGS registers 
X86
CPU

INTR
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■ Each device is assigned an interrupt number

■ At boot time the OS loads in memory the Interrupt 
Description Table (IDT), also called  Interruput 
vector

■ IDT entries point to an interrupt handler:
– a special routine able to manage the device that  

generated the interrupt

■ In the x86 CPU the OS  can use the instruction 
lidt to load in the IDT register  the address and 
the size of the IDT 

Answer 2
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Programmable Interrupt Circuit (PIC)

■ I/O devices trigger interrupt requests to 
the PIC

■ The PIC:

–associates  at each device an  
interrupt request (IRQ) number

–activates the INTR of the CPU 
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Interrupt Descriptor Table (IDT)

■ In the x86 architecture implements the interrupt vector

■ It may contain up to 256 entry (8 bytes each). The first 32 
are  reserved to the CPU

■ It can be anywhere in main memory. The address of the first 
entry is in the IDTR register 

■ For each device, the IDT makes a connection between the 
IRQ number  (IRQ#) of the device and the instructions to 
execute for managing its interrupt requests  (the handler)

Handler's address = IDT[IRQ#]
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Interrupt mechanism

■ If the INTR line is up, the CPU (automatically):

– Stores on the stack the current values of the 
EIP and EFLAGS registers

– Switch in kernel mode
– Loads from the data bus IRQ# (from the PIC)
– Loads in the EIP the address stored at:

IDTR+8*IRQ#

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
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PIC

INTR
CPU

IDTR

IRQ#

RAM
IDT

Interrupt 
handler

0

255

IRQs

In practice the CPU automatically jumps to (execute) 
the handler of the device which generated the 
interrupt

DATA BUS

IRQ#
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Interrupt Handler

■ What does the interrupt handler do? 
■ Usually, the handler: 

– Uses an assembly routine to save the register 
values (the context)

– Calls a routine (written in C) to manage the 
interrupt. Example: read/write of the device 
registers

– Restores the context of the interrupted process 
and give the control back to it or (sometimes) call 
the scheduler
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Linux:  the save_ALL macro
cld
push %es
push %ds
pushl %eax
pushl %ebp
pushl %edi
pushl %esi
pushl %edx
pushl %ecx
pushl %ebx
movl $ _ _USER_DS,%edx
movl %edx,%ds
movl %edx,%es

■ Linux interrupt 
handlers start by 
calling this macro

■ The instruction 
push %reg 
saves on the 
stack the value of 
the register %reg
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Keyboard interrupt handler (C code)

void irq_handler(int irq, ...)
{
   
   static unsigned char scancode;   
   unsigned char status;

   /* Read keyboard status */
   status = inb(0x64);
   scancode = inb(0x60);

.

.

.
  
   
}
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Interrupt management: overview

■ When a device interrupt occurs:
– The interrupt request is sent to CPU (via the INTR line)
– The CPU

• Stops the running process  
• Jump to the address containing the routine for 

managing that interrupt (interrupt handler)
– L'interrupt handler

•  manage the interrupt 
• Give the control back to the stopped process (or to 

another process)
• The interrupted process resume its computation, as if 

nothing ever happened

H
a
rd

w
a
re

S
o
ft
w
a
re
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■ The change of the value EIP register imply a 
jump to the code of the handler

■  At this point:
– the CPU resume its normal fetch-execute 

cycle 
– The (OS) handler  takes the control of the 

CPU

Interrupt management: details
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Multiple interrupts

■ During the management of an 
interrupt a new interrupt from a 
different device may occur;

■ Two possible solutions:
–Interrupt disambling
–Nested interrupts
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Interrupt disabling

■ When an interrupt is served new 
interrupt are (temporarily) ignored 
(the IF flag of the EEFLAGS is set 
down);

■ The ignored interrupt is pending;

■ interrupts are reenabled after that 
the interrupt has been served;
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Interrupt disabling

■ The CPU then check if a new 
interrupt occurred; if so the 
corresponding handler is called

■ Simple approach: interrupts are 
managed  sequentially

■  Does not take into account "time-
critical" conditions
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User process

Interrupt
Handler

Interrupt
i

i+1 Interrupt
Handler
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Nested Interrupt

■ Priorities 

■ Lower priority interrupts can be stopped 
by higher priority interrupts

■ It  needs a suitable mechanism for 
restore the previous interrupt

■ Faster device (network cards) usually 
have higher priority 
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User process

Interrupt
Handler

Interrupt
i

i+1

Interrupt
Handler
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I/O devices

■ Every I/O device is managed by the 
OS through its controller

■ An I/O controller is an electronic 
device which accept commands   
from the OS and performs the 
corresponding  action
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CONTROLLER

control register

status register

 data register

CPU

commands

status

data
DEVICE

signals

DATA

BUS
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■ Access policies to devices 
depends on  their controllers

Example
–disk controllers accept one 

request at time
–Queuing disk requests is an 

OS task
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■ Three ways to manage the 
interaction between OS and I/O 
devices: 
–Programmed I/O
–Interrupt-Driven I/O
–Direct Memory Access 

(DMA)
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Programmed I/O: input

1) OS loads the input request parameters into the 
control register of the controller.

2) The  controller starts to execute the request

3) The OS starts a cycle to check the device status 
register (busy wait cycle)

4) Once the data are available, the controller:
1) stores them into its own memory buffer
2)uses the status register to inform the OS that  the 

operation has been completed

5) Finally, the OS copies the data from the controller 
buffer to the main memory.
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Interrupt-Driven I/O: Input
1) OS loads the input request parameters into the control 

register of the controller.

2)  The controller starts to execute the  request

3) The OS assigns the CPU to another process

4) Once the data are available, the controller 
1) stores them into its memory buffer 
2) generates an interrupt to inform the OS that  the 

operation has been completed

5) Finally, the OS copies the data from the controller 
buffer to the main memory
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Programmed I/O and 
Interrupt-Driven I/O

■ Output operations are quite similar:
1) data are copied into controller buffers
2) Then request parameters are loaded into 

controller command registers

■ drawbacks: 
– CPU time is wasted for data transferring
– Data throughput depends on the (busy) CPU
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1) OS loads the input request parameters into the control 
register of the controller.

2)  The controller starts to execute the  request

3)   The OS assigns the CPU to another process

4)  Once the data are available, the controller
1) stores them directly from/to the main memory
2) generates an interrupt to inform the OS that  the 

operation has been completed

Direct Memory Access (DMA)
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Direct Memory Access (DMA)
I/O

 r
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data transferring
DEVICE

CPU

main memory 
(RAM)
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System calls
question

– I/O instructions  can executed only in 
kernel mode, by the OS. How can user 
processes execute  I/O operations?

answer
– User processes must request I/O 

operations to the OS, through the 
system calls (or syscall).
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■ The set of available syscalls  represents 
the interface between user processes 
(their programmers) and the OS 
(services)

■ When a user process needs a service 
from the OS, it makes  a system call

■ In  programming languages, syscalls are 
available through  routines  collected in 
libraries
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■ These libraries are usually provided with 
the compiler

■ EXAMPLE (C language)
–printf
–read
–write
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Application Programming 
Interface (API) 

■ An API details the set of available functions 
(services) provided by the  OS

■ APIs are abstractions of the services  
provided by  the OS 

■ APIs make applications hardware 
independent

■ API examples:

– API Win32, API POSIX, API JAVA
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The C standard Library

■ The  C standard library has been defined 
by International Standard Organizazion 
(ISO) 

■ It provides and lot of functions 
■ The API of the libc is specified by the 

header files. 
– Example 

• <math.h>
• <stdio.h>
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Syscalls: the mechanism
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System calls: parameter 
passing
■ There are three ways to pass  

parameters to syscalls:

– CPU registers: it is the simplest one, 
but there should be more parameters 
than available registers

– a memory block pointed by a CPU 
register 

– Stack
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Linux syscalls 

1)Syscall number is stored in the eax register

2)Parameters are stored on the stack.

3)The instruction int $=x80 is executed:

● The interrupt vector entry x80 points to the 
syscall manager:
syscall manager'address = IDTR+8*x80

4)The syscall manager reads the value 
contained in the  eax register
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Sytem calls: example

 count = read(fd, buffer, n)

–count: #bytes actually read

–fd: file descriptor

–buffer: where to copy the data (memory 
address) 

–n: #bytes to be read
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eax register

int x80
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System call handler

■ It is pointed by the entry 128 (0x80 exadecimal) of 
the  interrupt vector

■ Then it carries out the following actions:
– Saves the CPU registers  onto the stack (macro 

assembly SAVE_ALL)
– Calls the OS function that implements the action 

requested: 
call *sys_call_table[%eax]

– CPU registers are restored
– Switch back to user mode
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System call types

■ Process management

■ File managemet

■ File system and directories
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Process management
■ pid = fork()

– Creates  a  (son) process identical to the father 
(the caller)

■ pid = waitpid(pid, &statloc, options)
– waits the termination of the son process

■ s = execve(name, argv, environment)
– executes a program

■ exit(status)
– Terminates the current process (the caller) 



Francesco Fontanella, Operating Systems
Spring 2016 114

Fork call: example
■ A simple program for generating a son process:

int main()
{
  int pid;
  pid = fork();
  if (pid > 0) 
    printf(“father process\n”);
  else if (pid == 0) {
         printf(“son process\n”);
       else printf(“Error!\n”);
}
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File management
■ fd = open(file, how, …)

– Open a file (read or write) 
■ s = close(fd)

– Close a file
■ n = read(fd, buffer, nbytes)

– reads #bytes from file (fd file descriptor) and copies 
them to the buffer

■ n = write(fd, buffer, nbytes)
– Writes #bytes to file from the buffer

■ position = lseek(fd, offset, whence);
– Set the file pointer

■ s=stat(name, &buf)
– Status information about a file (name) copied into the 

buffer
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File management: example

■ The following program reads 10 bytes starting from the 
50th byte, from a file in the current folder

int main()
{
  int fd;
  char buffer[10];
  int read;
  fd = open(“test.txt”, “r”);
  lseek(fd, 50, SEEK_SET);
  if (read(fd, buffer, 10) != 10)
    printf(“ERROR reading 10 bytes!!!\n”);
}
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OS  structure
■ OS architecture describes the OS components 

and how they are connected
■ OS architectures can be very different from each 

other
■ Typical OS components:

– Process management (scheduler)
– Memory management (main and secondary)
– I/O device management
– file system
– Etc.
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■ SO design must consider:
–efficiency
–maintenance
–expandability
–Modularity

■ Often trade-offs are needed. Example: 
–Effciency vs modularity
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■ According to their structure, OS can be 
divided into two families:

–systems with a simple structure 

–systems with a layer stucture
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Simple structure: MS-DOS

 ROM BIOS device drivers

MS-DOS device drivers

Resident system programs

User programs
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MS-DOS 
■ Comments

– Interfaces and layers are not well separated
– Applications can directly access to the I/O 

devices 
– Security issues: wrong (malicious) programs can 

crash the system
■ Motivations:

– Designers was limited by the hardware
– 8086, 8088, 80286 did not have kernel/user 

mode
– designer first priority was: best functionality with 

least possible resources (CPU, RAM and  disk)
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UNIX

■ Simple structure
■ It is divided into two parts:

–kernel
–System programs

■ Motivations
–Also in this case hardware limitations
–However with a more structured 

approach
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UNIX

Kernel

Users

Hardware
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Layered OS
■ The OS is layer structured 
■ Each layer

– Uses lower layers
– offers services to the higher layers

■ Motivations
– the main advantage  is modularity

• encapsulation and data hiding
• abstract data types

– Layer structure simplifies: implementation, 
debugging, system evolution
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Layer interaction

Implementation

interface

layer N

Implementation

interface

Layer N functions 

Layer N-1 functions 

Layer N -1
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examples

■ THE OS (Dijkstra, 1968)
    5) user programs
    4) I/O management
    3) Console device/driver
    2) Memory management
    1) CPU Scheduling
    0) Hardware

■ Venus OS (1970)
    6) user program 
    5) Scheduler and  drivers 
    4) virtual Memory
    3) I/O channels
    2) CPU Scheduling
    1) instruction interpreter 
    0) Hardware
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■ drawbacks
– less efficient

• Each Layer adds overhead
– Layers must be studied carefully

• Functions at layer N must be implemented using only 
the services offered by lower layers

• This constraint, sometimesm can be hard to overcome

■ Result
– Modern SO have few (or none) layers
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Kernel organization
■ three  categories

– Monolithic
• A single (and reach) aggregate of procedures, 

mutually coordinate
– Micro kernel

• Minimum kernel which provides process 
management (scheduler) and message 
passing

• client/server paradigm
– Hybrid 

• Similar to Micro Kernel, but some components 
run in kernel space
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■ A set of procedures which makes a single 
address space 

■ Syscalls are implemented through modules 
running in kernel mode

■ Monolithic kernel are  organized in modules, 
but these modules are executed in the same 
space

Monolithic  kernels
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Kernel
mode

User program
User 
mode
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■ Efficiency
– High, because routines are highly 

coordinated and integrated
■ Modularity

– Modern monolithic kerneIs allow runtime 
loading 

– Only actually needed modules are in main 
memory

– Kernel is easily (and automatically) 
extensible

■ Examples
– LINUX, FreeBSD UNIX
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Linux modules

■ Are portions of software that can be added/discarded 
(at runtime) to the kernel

■ Main advantage   
– Kernel does not need to be ricompiled

NOTE
modules are not autonome unities: the kernel is still 
monolithic!

■ Are portions of software that can be added/discarded 
(at runtime) to the kernel

■ Main advantage
– Kernel does not need to be ricompiled

■ Are portions of software that can be added/discarded 
(at runtime) to the kernel

■ Main advantage 
– Kernel does not need to be ricompiled

■ Are portions of software that can be added/discarded 
(at runtime) to the kernel

■ Main advantage 
– Kernel does not need to be ricompiled
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Client/server systems 
■ Problem

– Kernel complexity keeps growing

■ Idea!

– Remove from the kernel non essential parts 
(services) and implements them as user 
processes

■ They implement client-server paradigm

■ microkernel OS examples:

– AIX, BeOS, L4, Mach, Minix, MorphOS, QNX, 
RadiOS, VST
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Microkernel
■ Only manages  CPU  scheduling e memory

■ message passing
– microkernel delivers messages among 

processes

User process File system

Kernel

Client Server

                                                                User mode

                                                              kernel mode
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Microkernel  system calls
■ Only two system calls

– send
– receive

■ Through them you can implement the standard  API 
for an OS

int open(char* file, ...)
  {
     msg = < OPEN, file, ... >;
     send(msg, file­server);
     fd = receive(file­server);
     
     return fd;
}
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Microkernel vantages

■ OS complexity is managed through the 
client/server paradigm

■ OS is easily expandable and modifiable
–New services are added as user 

processes (no kernel modifications)
–To update a given service: source 

code modification are limited to the 
service to be updated
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■ easy porting on different architectures
–Only the (micro)kernel must be 

modifed, 
–other modules have only to be 

recompiled

■ High reliability and self-healing 
(repairing) 
–If a service (its process) crashes, the 

OS  can still work
–The service can be restarted
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Microkernel   drawbacks

■  Low efficiency due to communication 
overhead

■  Instead of simple (and fast) procedure 
calls (like in monolithic  kernel) you must 
use several (slow) kernel syscalls (send 
and receive) for process communication
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Minix
■ kernel

– Process manager (scheduler) and (hardware) 

■ Everything else in  user space
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monolithic vs micro

■ Monolithic
–  source code in a single address space: 

less complex to be managed
– Easier to design

■ Micro Kernel
– It is used in when failures cannot be 

allowed
– Ex. QNX OS it is used for arm  robot of the 

Space shuttle
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Hybrid Kernels 
■ Are essentially micro kernels
■ For efficiency reasons,  they retain some services in 

“kernel space “
■ Use message passing for user process 

communication (like micro kernel)
■ Examples

– Microsoft Windows NT kernel
– Es. XNU (MAC OS X kernel)

NOTE
hybrid kernels should not be confused with monolithic 
kernels which have runtime loadable modules
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Policies  vs mechanisms 

■ Policy
– What to do (criteria)

■ Mechanism 
– How to do things (implementation)

■ Good practice 
– Policies and mechanism must be separated:

implementation choices should not influence 
policies (the choice of the criteria for resource 
management)

– It is not an easy task
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■ microkernels
– Kernel only implements mechanism
– Policies are delegated to user space processes

■ Example: MINIX
– Memory manager is a process out of the kernel: 

• It manage memory blocks, but can't directly 
access to them

• It can only access its own memory area  (like 
any other process)

– it implements its memory management policy 
through kernel  syscalls (system tasks)
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Booting the system

■ During the boot the kernel, or a part of it, is 
loaded in  main memory (RAM)

■ During the boot it needs to: 
– Initialize the kernel data stuctures
– Create at least an user process
– Give the control to the user process created

■ The boot strongly depends on  the hardware  
(we will refer to 80x86)
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The first instant

■ Memory is empty!

■ Just turned on, a hardware  circuit enables the 
RESET pin of the CPU 

■ Afterwards, the CPU executes  (in real mode) the 
instruction at the address:

0xfffffff0

which is memory mapped to an   EEPROM 
memory (non volatile memory).

■ This memory contains a set of routines called:

Basic Input/Output System (BIOS) 
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The BIOS

■ It is a de facto standard 

■ It was the set of software routines for 
the I/O management developed for 
the operating system CP/M (
Intel 8080 and Zilog Z80) 

■ BIOS instructions are executed in 
real  mode
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Real address mode

■ It was the operating mode of the (INTEL) CPUs  
precedent the 286

■ It has: 

– A 20 bit address space (1 MB)

– Direct access to all the address space and all 
the peripherical devices

■ It was defined to allow backward compatibility 
(before the 286 CPU!) 

■ Current processors stil have this operation mode 
(x86-64)
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The boot device

■ After hardware initilization, the BIOS searches  
for the boot device

■ Devices are searched by the BIOS according 
to a (modifiable) given order

■ Once the boot device has been found, the 
BIOS:
– copies the content of the first sector (boot 

sector)  of this device in RAM memory at 
the address  0x00007c00

– Executes the code just loaded:
jmp 0x00007c00
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