Operating systems

C function call conventions and stack

Spring 2016
Francesco Fontanella

Functions (call) and stack

mWhen a function is called at run time, it is
necessary to allocate memory for parameters
and local variables

m How does the compiler arrange the stack
when a function has to be called ?

Francesco Fontanella,Operating Systems
Spring 2016

Example

int main (int argc, char* argv[])

{
int a;
a = foo (10, 20, SO0 main is the “caller”
foo Is the “callee”
}
int foo (int argl, int arg2, int arg3)
{
int locl, loc2;
}

Francesco Fontanella,Operating Systems
Spring 2016

m [n the following we will assume
 sizeof(int). 4
« compiler: gcc
* OS: linux
« CPU: : x86

 The callee can modifiy the values of the
EAX, ECX and EDX registers

Francesco Fontanella,Operating Systems
Spring 2016

Registers

General purpose registers

0 31

EAX

EBX

ECX

EDX

EST

EDI

EBP

ESP

Status and control registers

EIP
EEFLAGS

Francesco Fontanella,Operating Systems
Spring 2016

X86 Instructions (assembly)

mov <reg>,<reg>
mov <reg>,<mem>
mov <mem>,<reg>

push <reg32>
push <mem>

pop <reg32>
pop <mem>

add
add

sub
sub

inc
inc

<reg>,<reg>
<reg>,<mem>

<reg>,<reg>
<reg>,<mem>

<reg>
<mem>

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Francesco Fontanella, Operating Systems

Spring 2016

m ESP register
 stack pointer register
* |t contains the address of the top of the stack

m EBP reqister
 Itis a “base pointer”

 Itrepresents the reference address for the
frame of the callee function (foo in the
example)

« Through this address, it is possible to refer to
the local variables and the arguments of the
callee

Francesco Fontanella,Operating Systems
Spring 2016

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

m ESP register
 stack pointer register
* |t contains the address of the top of the stack

m EBP reqister
 Itis a “base pointer”

 Itrepresents the reference address for the
frame of the callee function (foo in the
example)

« Through this address, it is possible to refer to
the local variables and the arguments of the
callee

Francesco Fontanella,Operating Systems
Spring 2016

A typical stack frame

int foo (int argl, int arg2, int arg3)

{

int locl, loc2;

NOTE
We also assume that the stack grows upward
(smaller address numbers on the top)

Francesco Fontanella,Operating Systems
Spring 2016

ESP ==>

stack

EBP ==>

callee saved
registers:
EBX,ESI & EDI

temporary storage

local variable #2

local variable #1

caller's EBP

return address

argument #1

argument #2

argument #3

caller saved
registers:
EBX,ESI & EDI

[EBP—8]

[EBP —4]

[EBP + 8]
[EBP + 12]

[EBP + 16]

10

int foo (int argl, int arg2, 1int arg3)

{

int locl, loc2;

mov eax, ebp+8

—///,,//”)" mov ebp-4, eax

argl,
arg2; » Mov eax, ebp+12
mov ebp-8, eax

loc1l
loc2

NOTES
— The mov assembly instruction copies the data
referred to by its second operand into the location

referred to by its first operand
} — it is not possible to move directly between memory

addresses

Francesco Fontanella,Operating Systems
Spring 2016 11

Return values

m Return values of 4 bytes or less are stored In
the EAX reqister

m If a return value with more than 4 bytes is
needed, then the caller passes an "extra" first
argument to the callee.

m This extra argument Is the address of the
location where the return value should be
stored.

m|n practice, the C preprocessor transforms
the call

Francesco Fontanella,Operating Systems
Spring 2016

12

Return values: example

typedef struct {
char name[100];
int ID;

} person;

person p;

p = myfunction(a,b) ; myfunction(&p,a,b);

Francesco Fontanella,Operating Systems
Spring 2016 13

Caller's actions before the function call

B Suppose that in the main there is the function call:
a = foo(1l2, 15, 18);
m Before to call the foo function the main performs the
following actions:

* pushes the contents of the registers EAX, ECX and
EDX onto the stack (only if the contents of these 3
registers need to be preserved).

* Pushes the values 18, 15, 12 onto the stack
(reverse order)

m Finally, the main issues the subroutine call function:
call foo

Francesco Fontanella,Operating Systems
Spring 2016 14

m When the eall CPU instruction Is executed,

the EIP (and the EEFLAGS too) Is pushed
onto the stack: the return address is now on
the top of the stack

m The foo function starts its execution,

m Note that before the function call, main Is
using the ESP and EBP registers for its own
stack frame

Francesco Fontanella,Operating Systems
Spring 2016 15

NOTE 1

the assembly instruction
push REG

copy onto the stack the content of the register REG

push
push
push
a = foo(12, 15, 18); push

push
push
call

NOTE 2

The first three instructions (grey shaded) are optional:

are executed only if the caller needs to preserve the

contentns of these 3 registers

Francesco Fontanella,Operating Systems
Spring 2016

EAX
ECX
EDX
dword 18
dword 15
dword 12
foo

17

The stack after call foo

ESP =—=> Return Address

Arg#1 =12
Arg #2 =15
Arg #3 =18

Caller saved registers
EAX. ECX & EDX
(as needed)

EBP ==

Francesco Fontanella,Operating Systems

Spring 2016

18

Callee actions after the function call

m When the function £oo gets the control, the EBP

register points to the base of the main's stack
frame: this value must be saved. It is pushed onto
the stack

®m Then the content of the ESP reqgister is copied into
the EBP register (EBP update)

m As conseqguence, (just about) all C functions begin
with the two Instructions:

push ebp

mov ebp, esp

Francesco Fontanella,Operating Systems
Spring 2016 20

ESP=EBP =>
foo:

push EBP
push EBP, ESP

NOTE

the address of the first argument

IS 8 plus EBP, since main's EBP and
the return address each

takes 4 bytes on the stack.

Francesco Fontanella,Operating Systems
Spring 2016

main's EBP
Return Address
Arg#1 =12
Arg #2 =15
Arg #3 =18

Caller saved registers
EAX, ECX & EDX
(as needed)

[EBP + 8]
[EBP + 12]

[EBP + 16]

21

® In the next step, foo must allocate space for its
local variables:

—Defined local variables: locl, loc2 (two integers,
8 bytes)

—Temporary variables: suppose 12 addional bytes
are needed

m The 20 bytes needed can be easily allocated:
sub esp, 20

m Finally it must preserve the contents of the EBX,
ESI and EDI registers

Francesco Fontanella,Operating Systems
Spring 2016 22

Temporary variables

m temporary variables are automatically defined by
the compiler for storing intermediate values In
complicated expressions.

m For example, some C statements in foo might
have complicated expressions like this:

arg3 = arg2 + ((locl + loc2)*argl)

®m To compute this expression, the intermediate
values of the subexpressions are stored In
temporary hidden (to the programmer) variables

Francesco Fontanella, Operating Systems
Spring 2016 23

foo:
push
push
sub
push
push
push

NOTE

The last three instructions are optional:

EBP
EBP, ESP
ESP 20
EBX

ESI

EDI

ESP ==

EBP=—>

are executed only if the callee needs to use
these 3 registers

Francesco Fontanella,Operating Systems

Spring 2016

Callee saved registers
EBX. ESI & EDI
(as needed)

temporary storage

-

local variable #2
local variable #1
main's EBP

Return Address

Arg#1=12
Arg#2=15
Arg#3=18

Caller saved registers
EAX, ECX & EDX
(as needed)

[EBP - 20]

[EBP - 8]

[EBP - 4]

[EBP + 8]
[EBP + 12]

[EBP + 16]

foo:

ESP ==>

ret

NOTE EBP =—>

the x86 ret instruction pops the return
address off the stack and stores it in the EIP
register

Francesco Fontanella,Operating Systems
Spring 2016

Arg #1 =12
Arg #2 =15
Arg #3 =18

Caller saved registers
EAX. ECX & EDX
(as needed)

25

Callee's actions before returning

m Before returning the control to the caller, the callee
foo must:

« Save the return value in the EAX register (4
oytes or less) or in the area pointed by the extra
nointer parameter

* Restore the values of the EBX, ESI and EDI
registers (if previously saved)

« Deallocate the stack memory for local and temp
variables: they are no longer needed

Francesco Fontanella,Operating Systems
Spring 2016

26

foo:

. ESP ==>]| Return Address
. Arg #1 =12
o EDI
el Arg #2 =15
pop ESI =
pop EBX Arg #3 = 18
mov esp, ebp
pop ebp Caller saved registers
EAX. ECX & EDX
(as needed)
NOTES
— the first three instructions are executed EBP ==>

only if these registers have been
previously saved

Francesco Fontanella,Operating Systems
Spring 2016 27

foo:

ret

NOTE

the x86 ret instruction pops the caller (the
main function) return address off the stack
and stores it in the EIP register

Francesco Fontanella,Operating Systems

Spring 2016

ESP === Arg #1 =12
Arg #2 =15
Arg #3 =18

Caller saved registers
EAX. ECX & EDX
(as needed)

EBP =—>

28

Caller's actions after returning

B the arguments passed to foo are no longer needed,
and the stack memory can be easily deallocated:

add esp 12

m The return value in the EAX register (4 bytes or less)
IS copied In the appropriate location (x variable
address In our example)

m If previously saved, the values of the EAX, ECX and
EDX registers are restored

® Then the stack is how it was before the beginning of
the entire function call process

Francesco Fontanella,Operating Systems
Spring 2016 29

main:
ESP ==>
. as before
the function
* call
add esp, 12
pop EDX EBP ==> |main return address
pop ECX
pop EAX
NOTE

the last 3 instructions are executed only if these
registers were previously saved

Francesco Fontanella,Operating Systems
Spring 2016

Return address of the main

® Now an important question rises:

where does point the return address of the main
function

Answer

it points to the libc exit function, which issues the
syscall exit of the OS

Francesco Fontanella,Operating Systems
Spring 2016

31

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

