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Functions (call) and stack

mWhen a function is called at run time, it is
necessary to allocate memory for parameters
and local variables

m How does the compiler arrange the stack
when a function has to be called ?
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Example

int main (int argc, char* argv[])

{
int a;
a = foo (10, 20, SO0 main is the “caller”
foo Is the “callee”
}
int foo (int argl, int arg2, int arg3)
{
int locl, loc2;
}
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m [n the following we will assume
 sizeof(int). 4
« compiler: gcc
* OS: linux
« CPU: : x86

 The callee can modifiy the values of the
EAX, ECX and EDX registers
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Registers

General purpose registers

0 31

EAX

EBX

ECX

EDX

EST

EDI

EBP

ESP

Status and control registers

EIP
EEFLAGS
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X86 Instructions (assembly)

mov <reg>,<reg>
mov <reg>,<mem>
mov <mem>,<reg>

push <reg32>
push <mem>

pop <reg32>
pop <mem>

add
add

sub
sub

inc
inc

<reg>,<reg>
<reg>,<mem>

<reg>,<reg>
<reg>,<mem>

<reg>
<mem>

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
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m ESP register
 stack pointer register
* |t contains the address of the top of the stack

m EBP reqister
 Itis a “base pointer”

 Itrepresents the reference address for the
frame of the callee function (foo in the
example)

« Through this address, it is possible to refer to
the local variables and the arguments of the
callee
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A typical stack frame

int foo (int argl, int arg2, int arg3)

{

int locl, loc2;

NOTE
We also assume that the stack grows upward
(smaller address numbers on the top)

Francesco Fontanella,Operating Systems
Spring 2016

ESP ==>

stack

EBP ==>

callee saved
registers:
EBX,ESI & EDI

temporary storage

local variable #2

local variable #1

caller's EBP

return address

argument #1

argument #2

argument #3

caller saved
registers:
EBX,ESI & EDI

[EBP—8]

[EBP —4]

[ EBP + 8]
[EBP + 12 ]

[ EBP + 16 ]

10



int foo (int argl, int arg2, 1int arg3)

{

int locl, loc2;

mov eax, ebp+8

—///,,//”)" mov ebp-4, eax

argl,
arg2; »  Mov eax, ebp+12
mov ebp-8, eax

loc1l
loc2

NOTES
— The mov assembly instruction copies the data
referred to by its second operand into the location

referred to by its first operand
} — it is not possible to move directly between memory

addresses
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Return values

m Return values of 4 bytes or less are stored In
the EAX reqister

m If a return value with more than 4 bytes is
needed, then the caller passes an "extra" first
argument to the callee.

m This extra argument Is the address of the
location where the return value should be
stored.

m|n practice, the C preprocessor transforms
the call
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Return values: example

typedef struct {
char name[100];
int ID;

} person;

person p;

p = myfunction(a,b) ; myfunction(&p,a,b);
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Caller's actions before the function call

B Suppose that in the main there is the function call:
a = foo(1l2, 15, 18);
m Before to call the foo function the main performs the
following actions:

* pushes the contents of the registers EAX, ECX and
EDX onto the stack (only if the contents of these 3
registers need to be preserved).

* Pushes the values 18, 15, 12 onto the stack
(reverse order)

m Finally, the main issues the subroutine call function:
call foo
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m When the eall CPU instruction Is executed,

the EIP (and the EEFLAGS too) Is pushed
onto the stack: the return address is now on
the top of the stack

m The foo function starts its execution,

m Note that before the function call, main Is
using the ESP and EBP registers for its own
stack frame
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NOTE 1

the assembly instruction
push REG

copy onto the stack the content of the register REG

push
push
push
a = foo(12, 15, 18); push

push
push
call

NOTE 2

The first three instructions (grey shaded) are optional:

are executed only if the caller needs to preserve the

contentns of these 3 registers
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EAX
ECX
EDX
dword 18
dword 15
dword 12
foo
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The stack after call foo

ESP =—=> Return Address

Arg#1 =12
Arg #2 =15
Arg #3 =18

Caller saved registers
EAX. ECX & EDX
(as needed)

EBP ==

Francesco Fontanella,Operating Systems

Spring 2016

18



Callee actions after the function call

m When the function £oo gets the control, the EBP

register points to the base of the main's stack
frame: this value must be saved. It is pushed onto
the stack

®m Then the content of the ESP reqgister is copied into
the EBP register (EBP update)

m As conseqguence, (just about) all C functions begin
with the two Instructions:

push ebp

mov ebp, esp
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ESP=EBP =>
foo:

push EBP
push EBP, ESP

NOTE

the address of the first argument

IS 8 plus EBP, since main's EBP and
the return address each

takes 4 bytes on the stack.
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main's EBP
Return Address
Arg#1 =12
Arg #2 =15
Arg #3 =18

Caller saved registers
EAX, ECX & EDX
(as needed)

[EBP + 8]
[EBP + 12]

[EBP + 16]
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® In the next step, foo must allocate space for its
local variables:

—Defined local variables: locl, loc2 (two integers,
8 bytes)

—Temporary variables: suppose 12 addional bytes
are needed

m The 20 bytes needed can be easily allocated:
sub esp, 20

m Finally it must preserve the contents of the EBX,
ESI and EDI registers
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Temporary variables

m temporary variables are automatically defined by
the compiler for storing intermediate values In
complicated expressions.

m For example, some C statements in foo might
have complicated expressions like this:

arg3 = arg2 + ((locl + loc2)*argl)

®m To compute this expression, the intermediate
values of the subexpressions are stored In
temporary hidden (to the programmer) variables
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foo:
push
push
sub
push
push
push

NOTE

The last three instructions are optional:

EBP
EBP, ESP
ESP 20
EBX

ESI

EDI

ESP ==

EBP=—>

are executed only if the callee needs to use
these 3 registers
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Callee saved registers
EBX. ESI & EDI
(as needed)

temporary storage

-

local variable #2
local variable #1
main's EBP

Return Address

Arg#1=12
Arg#2=15
Arg#3=18

Caller saved registers
EAX, ECX & EDX
(as needed)

[EBP - 20]

[EBP - 8]

[EBP - 4]

[EBP + 8]
[EBP + 12]

[EBP + 16]



foo:

ESP ==>

ret

NOTE EBP =—>

the x86 ret instruction pops the return
address off the stack and stores it in the EIP
register
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Arg #1 =12
Arg #2 =15
Arg #3 =18

Caller saved registers
EAX. ECX & EDX
(as needed)
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Callee's actions before returning

m Before returning the control to the caller, the callee
foo must:

« Save the return value in the EAX register (4
oytes or less) or in the area pointed by the extra
nointer parameter

* Restore the values of the EBX, ESI and EDI
registers (if previously saved)

« Deallocate the stack memory for local and temp
variables: they are no longer needed
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foo:

. ESP ==>]| Return Address
. Arg #1 =12
o EDI
el Arg #2 =15
pop ESI =
pop EBX Arg #3 = 18
mov esp, ebp
pop ebp Caller saved registers
EAX. ECX & EDX
(as needed)
NOTES
— the first three instructions are executed EBP ==>

only if these registers have been
previously saved
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foo:

ret

NOTE

the x86 ret instruction pops the caller (the
main function) return address off the stack
and stores it in the EIP register
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ESP === Arg #1 =12
Arg #2 =15
Arg #3 =18

Caller saved registers
EAX. ECX & EDX
(as needed)

EBP =—>

28



Caller's actions after returning

B the arguments passed to foo are no longer needed,
and the stack memory can be easily deallocated:

add esp 12

m The return value in the EAX register (4 bytes or less)
IS copied In the appropriate location (x variable
address In our example)

m If previously saved, the values of the EAX, ECX and
EDX registers are restored

® Then the stack is how it was before the beginning of
the entire function call process
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main:
ESP ==>
. as before
the function
* call
add esp, 12
pop EDX EBP ==> |main return address
pop ECX
pop EAX
NOTE

the last 3 instructions are executed only if these
registers were previously saved
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Return address of the main

® Now an important question rises:

where does point the return address of the main
function

Answer

it points to the libc exit function, which issues the
syscall exit of the OS
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