Operating Systems
Inter-process Communication (IPC)

Spring 2016
Francesco Fontanella

Inter-process communication

m Processes executing concurrently may be
iIndependent or cooperanting

m Two (or more) processes are independent
If they cannot influence each other

The OS guarantees for this

m Two (or more) processes cooperate if the
execution of a process can influence that
of another one

Francesco Fontanella, Operating Systems
Spring 2016

m Inter-process communication (IPC) must
be managed by the OS

® Two main models for IPC:;
— Shared memory
— message-passing

m Most operating systems implement both
mechanism for |PC

Francesco Fontanella, Operating Systems
Spring 2016

Message passing Shared memory

process A M process A -
Pl k
shared Q
2
process B M process B
2 1
kernel M kernel

(@) (b)

Francesco Fontanella, Operating Systems
Spring 2016

Shared memory

m A process allocates a memory area (usually iIn
Iits own address space)

m Other processes add this area to their address
space

m The OS, only in this case, allows other
processes to access to the memory of that
which allocated the memory area.

m Then communication takes place reading and
writing the shared memory

m data syncronization must be managed by
processes

Francesco Fontanella, Operating Systems
Spring 2016

Producer-consumer problem:
solution

B Processes can communicate through a
shared-memory buffer

B The producer/consumer process
writes/reads to/from the buffer

® The buffer may be:

— Unlimited (theorically): the producer
doesn't worry if the buffer is full

— Limitated: the buffer has a fixed size. If
the buffer is full, the producer must wait

Francesco Fontanella, Operating Systems
Spring 2016

Producer/consumer problem

m A process (the producer) generates data (record,
chars, objects, etc.) and it wants send them to
another process (consumer) which processes the
data

® They communicate through a shared variable

m Data synchronization must be guaranteed:

— The producer does not overwrite data not yet
processed by the consumer

— The consumer must wait for the generation of
new data

Francesco Fontanella, Operating Systems
Spring 2016

Producer-consumer problem:
solution

B Processes can communicate through a
shared-memory buffer

B The producer/consumer process
writes/reads to/from the buffer

® The buffer may be:

— Unlimited (theorically): the producer
doesn't worry if the buffer is full

— Limitated: the buffer has a fixed size. If
the buffer is full, the producer must wait

Francesco Fontanella, Operating Systems
Spring 2016

Circular array

® A limited buffer can be implemented
through a circular array

Francesco Fontanella, Operating Systems
Spring 2016

10

producer/consumer: example

#define BUFFER SIZE 10
#define IN O

#define OUT 1

typedef struct {

} item;

item buffer[BUFFER SIZE];

int inout[2];

inout[IN] = inout[OUT] = O0;

Francesco Fontanella, Operating Systems
Spring 2016

11

Producer

void producer(item buffer[], int &in, int out)

item tmp;

while (true) { Busy waliting

/* item production */

while (((in + 1) % BUFFER SIZE) == out)
; /* waits 1f there is no room in the buffer*/
buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

Francesco Fontanella, Operating Systems 12
Spring 2016

Consumer

void consumer (item buffer[], int in, int &out)

{

item tmp

while (true) {
while (in == out) - - Busy Wa|t|ng
s // buffer empty: waiting

4

// the item is pop out
tmp = buffer[out];
out = (out + 1) % BUFFER SIZE;

/* si consuma 1l'item*/

Francesco Fontanella, Operating Systems
Spring 2016

13

POSIX shared memory

m Syscall to allocate shared memory:
int shmget(key t key, size t size, int shmflgqg)
seg_id = shmget(IPC_PRIVATE, size, S IRUSR| S IWUSR)
key: segment (area) identifier. The constant value

IPC_PRIVATE specifies that a new segment must be
allocated.

size: segment size.

shmflg: specifies the access mode. s IRUSR|
S_IWUSR specifies both read and write

— returns the id of the segment allocated

Francesco Fontanella, Operating Systems 14
Spring 2016

m To “attach” a shared memory area (segment) to the
the address space of the calling process:

sh mem = (char *) shmat (id, NULL, O0)

id: segmentid

— The second parameter may specify where to
attach the segment. It the NULL value is passed,
the OS chooses a suitable (unused) address

— The third parameter specifies the access mode:
* O read only
e > (0 read and write

Francesco Fontanella, Operating Systems 15
Spring 2016

m When the segment is no longer needed, it can
be “detached” from the address space of the
calling process by the function:

shmdt (const void *shmaddr)
- shmaddr: pointer to the segment to be
detached

Francesco Fontanella, Operating Systems 16
Spring 2016

Example

#include <sys/ipc. h>
- #include <sys/shm.h>

int main()

{
pid t pid;
int seg id;
char *sh mem;

seg id shmget (IPC_PRIVATE, size, S_IRUSR| S _IWUSR) ;

sh mem (char *) shmat(seg id, NULL, 1);
pid = fork();
if (pid < 0) { // error!
fprintf(stderr, "Fork Failed");
exit(-1);

Francesco Fontanella, Operating Systems
Spring 2016

if (pid == 0) // child process

printf (“child process, shared string: %s”,
else { // father process

sprintf (sh mem, “hello!");

exit(0);

Francesco Fontanella, Operating Systems
Spring 2016

sh mem) ;

18

Message passing

m |t allows processes to comunicate and
synchronize their actions

B A message is a set of information
formatted by a sender process and
interpretated by a receiver process

B message passing is implemented by copying
the content of the message from the sender
space address to the receiver space address

m It allows inter-process communication
without memory sharing

Francesco Fontanella, Operating Systems
Spring 2016

19

send and receive

send(message)
— Used by the sender
— It must specify the receiver process
— Message size can be fixed or variable

receive(message):
— Used by the receiver
— |t is not needed to specify the sender

Francesco Fontanella, Operating Systems
Spring 2016

20

m If two processes P and Q want communicate,
must:

— establish a communication channel
— Use send and receive for message passing

Operating
sender System
/’ messagge Y-
original 4 a Copied
data data
receiver

Francesco Fontanella, Operating Systems
Spring 2016

Direct Communication

m Processes must know the PID of the process
they want communicate with

—send (PID1, m) - sends the message m to

PID1 process

— receive(PID2, m) - receives the message m

form the process PID?2

m Communication channel properties:

t is automatically established

t is dedicated for the communication
petween the two processes

t is usually bidirectional

Francesco Fontanella, Operating Systems 29
Spring 2016

Indirect Communication

B Messages are sent/received to/from ports (called
also mailboxes):

— Ports are uniquely identified, usually an integer
value

— Two processes may communicate if they share a
port

m Communication channel properties:
— It Is established once the port is shared
— It may be associated to more processes
— Two processes may share more channels (ports)
— Channels may be uni/bi-directional

Francesco Fontanella, Operating Systems 23
Spring 2016

m OS allows processes:
— To create a port A
— send/receive messages through the port A
— Destroy (close) the port A

® Primitive
— send(A, m) - sends the message m to the
port A

— receive(A, m) - receives (copy in) the
message m from the port A

Francesco Fontanella, Operating Systems
Spring 2016

24

Synchronization

m Message passing can be both synchronous
(blocking) or asynchronous

m synchronous sending: the sender awaits for
(blocked) the receiver reception

m asynchronous sending: the sender continues
to execute normally, checking if the message
has been received

m synchronous reception: the receiveris
blocked while awaiting for the message

m asynchronous reception: the receive primitive
does not block the receiver, which must check
whether the message has been sent or not

Francesco Fontanella, Operating Systems o5
Spring 2016

Producer-consumer problem

m It can be solved by using synchronous
sending and receiving messages

m The producer just sends messages, and
then it is blocked until the receiver do not
read it

m The consumer instead awaits for producer
message, and it is blocked if no messages
have been sent

Francesco Fontanella, Operating Systems 26
Spring 2016

#define
#define
#define
typedef

} item;

BUFFER SIZE 10
IN O

OUuT 1

struct {

item buffer[BUFFER SIZE];
int inout[2];

Francesco Fontanella, Operating Systems
Spring 2016

27

message passing VS

shared memory

void producer(pid t c_id)
item tmp;

while (true) {

/* produce an item*/

send(&tmp, sizeof(item),
c_id);

void producer(item buffer[], int

&in, int out)
item tmp;
while (true) {

/* produce an item*/

while (((in + 1) % BUFFER SIZE)

== out)
14
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

Francesco Fontanella, Operating Systems 28
Spring 2016

void consumer(pid t p id) void consumer (item buffer[], int in,

{ int &out)
item tmp; {
item tmp;
while (true) {
receive(&tmp, sizeof(item), while (true) {
p_id); while (in == out)

/* consume the item*/ ’
// extract the item
. tmp = buffer[out];
} out = (out + 1) % BUFFER SIZE;

/* consume the item*/

}

Francesco Fontanella, Operating Systems 29
Spring 2016

producer/consumer: shared memory

int main(int argc, char* argv[])

{
/* process id */
pid t pid;

/* memory segment id */
int buffer id, inout_id;;

item* shared buffer; /* buffer pointer */
int* shared inout; /* inout pointer */

if ((buffer id = shmget(IPC_PRIVATE, sizeof(item)*BUFFER SIZE,

PERMS)) == -1) {
fprintf(stderr,"ERROR!: impossible to allocate shared memory\n");
exit(-1);

}

if ((inout_id = shmget(IPC PRIVATE, sizeof(int)*2, PERMS)) == -1) {
fprintf(stderr,"ERROR!: impossible to allocate shared memory \n");
exit(-1);

}

Francesco Fontanella, Operating Systems 30
Spring 2016

if ((shared buffer = (item *) shmat(buffer id, 0, 0)) == (item *) -1)
fprintf(stderr, "Unable to attach to segment %d\n",buffer id);
exit(-1);

}

if ((shared buffer = (int *) shmat(inout id, 0, 0)) == (int *) -1) {
fprintf (stderr, "Unable to attach to segment %d\n",buffer id);
exit(-1);

}

pid = fork();
if (pid < 0) { // error!
fprintf(stderr, "Fork Failed");
exit(-1);
}
if (pid == 0) // child process: consumer
consumer (shared buffer, shared inout[IN], sharred inout[OUT])
else // father process: producer
producer (shared buffer, shared inout[IN], shared inout[OUT])

exit(0);

Francesco Fontanella, Operating Systems
Spring 2016

31

producer/consumer: message passing

int main(int argc, char* argv[])

{
/* process id */
pid t pidl, pid2;

pidl

getpid();

pid2

fork();

if (pid2 < 0) { // error!
fprintf(stderr, "Fork Failed");
exit(-1);

if (pid2 == 0) // child process: consumer
consumer (pidl);

else // father process: producer
producer (pid2);

exit(0);

} Francesco Fontanella, Operating Systems 32
Spring 2016

Socket

m A socket is defined as an endpoint of a
communication channel

®m WO processes across a network can
communicate via sockets

m A socket is identified by:
— IP address
— port number
— Example: 143.225.2.121:1625

m The ports in the range 0-1024 are used for
standard services.

Francesco Fontanella, Operating Systems
Spring 2016

41

Example

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

Francesco Fontanella, Operating Systems
Spring 2016

42

Pipes

m A pipe is an Inter-process communication channel
m Producer-consumer paradigm

m Unidirectional

m The producer writes on the write-end endpoint

m The consumer reads from the read-end endpoint

m The OS copies the data from the write-end to the
read-end

m [n UNIX-based OS, a pipe is a special type of file

Francesco Fontanella, Operating Systems 43
Spring 2016

Syscall pipe

#include <unistd.h>
int pipe(int *fd);

— Returns: O in case of success, -1 otherwise
— Stores in the fd parameter the values of two file
descriptors

Francesco Fontanella, Operating Systems
Spring 2016

44

m filedes[0] contains the descriptor of a file
opened in read mode

m filedes[1] contains the descriptor of a file
opened in write mode

m Data flow from the write descriptor to the
read descriptor:

— The OS transforms the output of filedes[1]
Into the input of £iledes[0]

Francesco Fontanella, Operating Systems
Spring 2016

45

Pipe+fork

m A typical pipe usage is the following:

int fd[2];

pipe(£fd);
pid=fork();

Francesco Fontanella, Operating Systems
Spring 2016

46

pipe

parent

£4[0] £d[1]

» PIPE

out

Francesco Fontanella, Operating Systems
Spring 2016

47

parent

£fd[0]

£A[1]

fork

child

£fd[0]

£A[1]

in

PIPE

out

Francesco Fontanella, Operating Systems

Spring 2016

48

From father to child

if (pid > 0) // father
close(£d[0]);

else close(fd[1l]); // child
parent
fd[0] fd[1]
in PIPE out

child

£fd[0]

£A[1]

Francesco Fontanella, Operating Systems

Spring 2016

49

from the child to the father

if (pid > 0) // father
close(fd[1l]);

else close(fd[0]); // child
parent
£4[0] f£d[1]
in PIPE out

child

£4[0]

£d[1]

Francesco Fontanella, Operating Systems

Spring 2016

50

Pipe usage

m Once a pipe has been created, and the
direction chosen, the user can read/write
from/to by using the standard (binary) I/O
functions

m data from the pipe are read in the same order
In which they were written to

m Pipes have a limited capacity (PIPE_BUF
constant)

Francesco Fontanella, Operating Systems 51
Spring 2016

write

size t write(int fd, comnst void *buf, size t count)

m If the pipe is full, the write syscall blocks the
caller until there is no space in the pipe for
all the data (no partial writes)

m |t returns the number of bytes actually
written

m If the fd reading end is closed, this function
generates an error (SIGPIPE signal)

Francesco Fontanella, Operating Systems 52
Spring 2016

Read

size t read(int fd, void *buf,
size t count);

m Read data from the pipe. Data can't be
read again or sent back.

m If the pipe is empty, the calling process is
blocked until data are available (blocking
syscall)

m If the fd writing end is closed, the function
empty the pipe and then returns EOF

Francesco Fontanella, Operating Systems 53
Spring 2016

Example

int main(void)

{

char write msg[BUFFER SIZE] = "Greetings";
char read msg[BUFFER SIZE];

pid t pid;

int £d4[2];

/** create the pipe */

if (pipe(fd) == -1) {
fprintf (stderr,"Pipe failed");
return 1;

}

/** now fork a child process */
pid = fork();

if (pid < 0) ¢
fprintf(stderr, "Fork failed");
return 1;

Francesco Fontanella, Operating Systems
Spring 2016

55

if (pid > 0) { /* parent process */
/* close the unused end of the pipe */

close(fd[READ _END]);

/* write to the pipe */
write(fd[WRITE END], write msg, strlen(write msg)+1l);

/* close the write end of the pipe */
close(fd[WRITE END]);

}

else { /* child process */
/* close the unused end of the pipe */

close(fd[WRITE END]);

/* read from the pipe */
read(fd[READ_END], read msg, BUFFER SIZE);
printf("child read %s\n",read msg);

/* close the write end of the pipe */
close(fd[READ END]);
}

Francesco Fontanella, Operating Systems
Spring 2016

56

FIFO (Named pipe)

m father-child relationship no longer needed

= They continue to exist indepently from the
processes which created/used them

m |t can be opened by multiple processes for reading
or writing

m The following function creates a new fifo:
int mkfifo(const char *pathname, mode t mode)

m They can be managed by the function:
open(), read(), write() € close()

Francesco Fontanella, Operating Systems 57
Spring 2016

Example

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *pathname, mode t mode);

Returns O if successfull, -1 otherwise

Francesco Fontanella, Operating Systems
Spring 2016

58

Remarks

m FIFO is a (special) type of file:
— Use the functions, open(), read(), write(), etc
— It is on file system

B as concerns the data access:

— data can Dbe read only in first-in-first-out
order (no random access, no Iseek)

— Data can't be read again or sent back

Francesco Fontanella, Operating Systems
Spring 2016

59

Example

m Client processes can send request to a server

Process
read

FIFO

W‘

Francesco Fontanella, Operating Systems
Spring 2016

61

FIFO: client

#include<stdio.h>
#include<unistd.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<fcntl.h>

int main(){

int fds, pid;

char c[5],£f[9];

if ((fds=open("FIFO",0 WRONLY))<0){ //Opens the FIFO
printf("Error: impossible to open the FIFO\n");
exit(0);

}

pid=getpid();

write(fds, &pid,sizeof(pid)); //send the message to the server
close(fds); //closes the well-known FIFO
while(1l) //walits to be killed

4

} Francesco Fontanella, Operating Systems 62
Spring 2016

FIFO: server

#include<stdio.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<fcntl.h>
#include<signal.h>

int main(){
int fd;
int pidc;

//CREATES THE FIFO

if (mkfifo("FIFO",S IRWXU|S IRGRP|S IROTH)<O) {
printf("\nImpossible to create the FIFO\n");
exit(0);

}

Francesco Fontanella, Operating Systems
Spring 2016

while(1){
if ((fds=open("FIFO",0 RDONLY)) < 0){ //0Open the FIFO
printf("\nError: it is impossible to open the
FIFO\n");
exit(0);

}
If (read(fds,&pidc,sizeof(pidc))<0){ //read from the

FIFO
printf("Error: message not valid\n");

return;

}
printf("the server read from the FIFO %d\n",pidc);

kill(pidc,SIGKILL); //kills the client process

close(fds); //closes the well-known FIFO

return;

Francesco Fontanella, Operating Systems
Spring 2016

64

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 61
	Slide 62
	Slide 63
	Slide 64

