
Operating Systems

File system
Spring 2016

Francesco Fontanella

Francesco Fontanella, Operating Systems
Spring 2016 2

Introduction

■ Information can be permanently stored on different media
Examples: hard disks, optical disks, flash drive, etc.

■ Each of these media has different physical characteristics

■ file systems provide an abstract interface which is:
 common (to all media)
 efficient
 easy to use (for users and programmers)

Francesco Fontanella, Operating Systems
Spring 2016 3

■ From the user point of view, a file system consists of:
 file: logical unit for permanent information storing
 directory: a set of information for organizing and

providing information on the files making up a file
system

■ File concept
 Is the atomic entity for allocating/managing peripheral

memory
 Is a collection of correlated information
 provides a logical uniform view for correlated

information

Francesco Fontanella, Operating Systems
Spring 2016 4

File attributes

■ name:
 Character string allowing users (and OS too) to identify each file in

the file system
 Some systems are case sensitive (Ex: UNIX, Linux)

■ type:
 Specifies the file type. It is necessary in some OS

■ Location and size
 Where the file actually is in the peripheral memory and how many

bytes it occupies
■ Date and time:

 Information about file creation and last modification date

Francesco Fontanella, Operating Systems
Spring 2016 5

■ ownership
 users, groups, etc.
 Used for accounting and authorization

■ protection:
 Access informations to check who is authorized to

perform operations on the file
■ Other attributes

 flags (system, archive, hidden, etc.)
 Locking information
 etc.

Francesco Fontanella, Operating Systems
Spring 2016 7

File types

■ According to file internal structure
 without format (byte string): text file
 with format: file of records, database, a.out,...

■ According to the file content
 ASCII/binary (displayable or not, 7/8 bit)
 source code, object code, …
 executable (active object)

Francesco Fontanella, Operating Systems
Spring 2016 8

■ Some OS support (and recognize) different types of
files

■ File type recognition allows avoiding errors like, for
example, printing executable files

■ Three main techniques for file type identification:
 extensions
 A “type” attribute in the directory entry

associated to the file (Mac OS)
 magic numbers (UNIX)

Francesco Fontanella, Operating Systems
Spring 2016 9

■ MS-DOS:

 File name 8+3 (name + extension)

 Extension recognition: .COM, .EXE, .BAT

■ Windows 9x / NT

 Variable size for file names and extensions
 Extension recognition .COM, .EXE, .BAT
 Extension-program association

■ Mac OS
 The program which created the file is a file attribute

together with the type attribute

■ Unix/Linux

 magic number + extension + euristic (UNIX).

Francesco Fontanella, Operating Systems
Spring 2016 10

File types: further distinctions

■ Usually, file systems distinguish among:
– regular files
– directories

• Are system files for managing file organization
– special block files

• to model I/O devices like hard disks
– special character files

 to model serial I/O devices like terminals,
printers, etc

– other special files
 Example: pipes

Francesco Fontanella, Operating Systems
Spring 2016 11

■ Files can be structured in several different ways:
1) Byte sequences
2) Logical record sequences
3) Indexed files (tree structured)

1. 2. 3.

Francesco Fontanella, Operating Systems
Spring 2016 12

File structure

■ different choices are available for file structures:
– Minimal choice:

• Files are managed as simple byte
sequences, except the executable files
which format is prescribed by the OS

• e.g., UNIX and MS-DOS
 structured part/ user defined part

• e.g. Macintosh (resource fork / data fork)
– Different types of predefined files

• e.g., VMS, MVS

Francesco Fontanella, Operating Systems
Spring 2016 13

Structure file support

■ trade-off:
– More formats

• More complex system
• program incopatibility (accessing files of different

formats)
• Efficient management (and not duplications) for

special files
– less formats

• Simpler system code

Francesco Fontanella, Operating Systems
Spring 2016 15

Access modes

■ Sequential
 read, write
 tapes

■ Random access
 read pos, write pos (or seek operation)
 disks

■ indexed
 read key, write key
 database

Francesco Fontanella, Operating Systems
Spring 2016 16

Indexed access mode

■ There is a table whose entries contain the key-position
(location) correspondences

■ Once the file is open, the index table can be loaded in
main memory:

 allows a more efficient access
 costly in terms of memory

Francesco Fontanella, Operating Systems
Spring 2016 17

Example

Francesco Fontanella, Operating Systems
Spring 2016 18

File operations

■ File creation (space allocation directory update)
■ Open/close
■ Read/write/append (file pointer management)
■ Pointer positioning
■ Cancellation
■ Truncation
■ Reading/writing the file attributes (Example: ls,
touch, etc)

Francesco Fontanella, Operating Systems
Spring 2016 19

■ The API for file operations is based on the open/close
operations:

 A file must be opened before it can be managed, and
closed at the end of the managing

■ The abstraction related to the open/close operations are
useful for

 Managing file access data structures (e.g. FILE Table)
 Checking the access modes
 Managing concurrent accesses
 Defining a descriptor (i.e. file pointer) for access

operations

Open/close operations

Francesco Fontanella, Operating Systems
Spring 2016 20

■ Open/close operations modify the data structures
which the OS uses for managing files:

 Open file table

■ Multi-tasking OS have two different file tables:
 a global, single, table

 Has a single entry for each open file in the
whole system

 a process file table:
 Stores file access informations for that

process

Francesco Fontanella, Operating Systems
Spring 2016 21

File control block

permissions

creation, last access and modification

Owner and group ID

size

data blocks and/or data block pointers

Francesco Fontanella, Operating Systems
Spring 2016 22

File system data structures in memory

file
opening

file
reading/
writing

Francesco Fontanella, Operating Systems
Spring 2016 23

■ Process file table entries contain:
 Access mode (Read, write, etc)
 Current position of the file pointer

■ global file table entries contain:
 File control block
 #processes currently accessing the file

Francesco Fontanella, Operating Systems
Spring 2016 24

Directory
■ File system organization is based on the concept of directory:

 An abstraction for set of files
■ In many systems directories are (special) files
■ Directory operations

 creation
 cancellation
 opening
 closing
 reading
 Renaming
 link/unlink
 Traversal

Francesco Fontanella, Operating Systems
Spring 2016 25

Directory structures

■ Single level
■ Two levels
■ Tree structured
■ Acyclic graph
■ Graph

Francesco Fontanella, Operating Systems
Spring 2016 26

Single level directories

■ A single directory for all users
■ Naming and grouping problems

Francesco Fontanella, Operating Systems
Spring 2016 27

Two-level directories

■ A directory for each user
■ Path name
■ Different users can have files with the same name
■ Efficient search
■ No grouping

Francesco Fontanella, Operating Systems
Spring 2016 28

Tree structured directories

Francesco Fontanella, Operating Systems
Spring 2016 29

■ Efficient searching
■ Grouping capability
■ Absolute or relative path name
■ Current directory (working dir)

 $> cd /home/francesco/OS
 Creating a new fle/directorie is done in the current directory

■ Deleting a directory implies deleting the entire subtree
example
deleting the dir mail, also implies deleting the subdirectories
prog, copy, prt and the file exp

Francesco Fontanella, Operating Systems
Spring 2016 32

Acyclic Graph Directories (DAG)

■ Have shared subdirectories and files

Francesco Fontanella, Operating Systems
Spring 2016 33

General graph structure

Francesco Fontanella, Operating Systems
Spring 2016 34

■ Links to upper levels may creates cycles inside
the graph

■ Possible solutions:
 Upward links can point only files (no

subdirectories)
 Garbage collection
 A cycle detection algorithm every time a new

upward link is created

Francesco Fontanella, Operating Systems
Spring 2016 36

Coherence semantic

■ In a multitasking OS, processes access files
independently

■ How are managed the file modifications from the various
processes?

■ In UNIX
– Content modifications from a process are immediately

notified to the other processes
– Two different types of file sharing:

• A a single file current position pointer, shared by all
accessing processes

• Each accessing process has its own pointer

Francesco Fontanella, Operating Systems
Spring 2016 37

file system implementation

Francesco Fontanella, Operating Systems
Spring 2016 38

Hard disks

Francesco Fontanella, Operating Systems
Spring 2016 41

File system implementation

■ Problems to be taken into account
– Disk is split in blocks
– Block allocation/deallocation
– Free block management
– Directory implementation
– performance optimizations
– Techniques for coherence guarantee

Francesco Fontanella, Operating Systems
Spring 2016 42

Disk organization
■ A disk can be split in one or more partitions:

 Independent portion of the disk, each of which can host
different file systems

■ the first sector of the disk is the master boot record
(MBR):

 is used for the boot
 contains the partition table, and the active partition
 at the boot, it is read and executed

 MBR partition 1 partition 2 partition 4

 disk structure

partition 3

Francesco Fontanella, Operating Systems
Spring 2016 43

Master Boot Record
Structure of a master boot record

Address

DescriptionHex Oct Dec

0 0 0 code area

01B8 670 440 4

01BC 674 444 Usually nulls; 0x0000 2

01BE 676 446 64

01FE 776 510 55h

201FF 777 511

MBR, total size: 446 + 64 + 2 = 512

Size
(bytes)
440
(max.
446)

disk signature
(optional)

Table of primary
partitions
(Four 16-byte entries)

MBR signature;
0xAA55AAh

NOTE
MBR does not belong to any partition

Francesco Fontanella, Operating Systems
Spring 2016 44

Partitions

■ Two types of partitions
– Primary

• Can contains a single file system
– extended:

• Can be split in more logical partitions,
each with its own file system

• Can be bootable
• A disk can contains at most a single

extended partition

Francesco Fontanella, Operating Systems
Spring 2016 45

Partition record

Specifies the partition type:
NTFS, EXT3, SWAP, extended, etc.
A list of file system codes is available here

Description

1 Boot indicator (80h for active; otherwise, 00h)
3 Starting CHS (cylinder, head, sector) values
1 Partition type code
3 Ending CHS (cylinder, head, sector) values
4 Starting sector (LBA)
4 Partition size (in sectors)

Offsets Byte
Count

0
1 – 3

4
5 – 7

8 – 11
12 – 15

Francesco Fontanella, Operating Systems
Spring 2016 46

Extended Boot Record (EBR)

■ The Extended Boot Record (EBR) is the
descriptor used for logical partitions

■ Each logical partition is preceded by the
associated EBR

■ Each EBR contains a pointer to the next EBR

EBR 1 EBR 1EBR 3EBR 2

Francesco Fontanella, Operating Systems
Spring 2016 47

Disk organization

■ Each partition starts with the boot block
■ At the boot the MBR (machine) code loads and

executes the boot block of the active partition
■ On turn the boot block loads, and executes the OS

contained in the partition
■ The organization of the rest of the partition depends

on the file system

Boot
Block

Superblock
free space

management
Occ. space

management
root
dir

Files and directories

 partition structure

Francesco Fontanella, Operating Systems
Spring 2016 49

Allocation problem

■ OS disk drivers (and controllers) provide a set of
(phisycal) fixed size blocks

■ Starting from this simple organization, how file
abstraction can be implemented?

■ More precisely:
 how disk blocks are chosen for file

creation/expansion?
 How this blocks are linked in order to model a

single (logical) memory space

Francesco Fontanella, Operating Systems
Spring 2016 50

Contiguous allocation
■ File content is stored in

contiguous sequences of disk
blocks

■ Vantages
– No data structure for linking

the blocks
– Efficient sequential access

 Contiguous blocks does
not need (slow) arm seek
operations

– Direct access is also efficient:
• block=
offset/blocksize;

• pos= offset%blocksize;

 0- 5

6-11

12-17

18-23

24-29

30-35

36-41

Name Start Size

a 0 4

b 13 11

c 30 3

d 33 3

directory

Francesco Fontanella, Operating Systems
Spring 2016 52

■ Disavantages
 External fragmentation (as for main memory

allocation)
 Needs a policy for selecting the disk area: first fit,

best fit, worst fit....
 Files cannot grow up!

■ It is used for the swap partition (virtual memory) in Linux

Francesco Fontanella, Operating Systems
Spring 2016 53

Linked allocation
■ The content of a file is stored in a list of linked

blocks
■ Each block contains a pointer to (the index of)

the next block
■ File descriptor contains the pointers to the first

and the last blocks

Name Start End

a 0 4

directory

3 10 7 nil 6

nil 4 5

b 1 6

0-5

6-11

Allocatable space

Francesco Fontanella, Operating Systems
Spring 2016 54

■ Advantages
 No external fragmentation
 Efficient “append mode” acccess

■ disavantages
 Direct access inefficient
 File system perfomance tends to decrease:

 blocks tend to spread out, (arm seeks increase)
 Blocks size is not a power of two
 For small blocks (e.g. 512 bytes) pointer overhead

may result significant

https://www.win.tue.nl/~aeb/partitions/partition_types-1.html

Francesco Fontanella, Operating Systems
Spring 2016 55

■ To minimize pointer overhead, blocks are clustered in
blocks:

 atomic allocation units (typically containing 4, 8,
16 blocks)

■ Advantages
 The percentage of the space used for storing

pointers decreases

■ disadvantages
 internal fragmentation increseas

Francesco Fontanella, Operating Systems
Spring 2016 56

File Allocation Table (FAT)

■ Uses a separate table for storing the
pointer to the next block (or cluster)

■ An entry for each block (or cluster)
■ Similar to linked list

0-5

6-11

Name Start End

a 0 4

directory

b 1 6

Allocatable space

3

10

7

nil

6

nil

4

5

FAT

0

1

2

3

4

5

6

7

8

9

10

11

Francesco Fontanella, Operating Systems
Spring 2016 57

■ Advantages
 data blocks contain only data

■ Disadvantages
 File scanning also requires reading the FAT:

 The number of disk accesses increases
■ Advantages

 FAT blocks can be cached in memory:
 Direct access is fast because the pointer list can be

scanned in memory


■ Used by DOS

Francesco Fontanella, Operating Systems
Spring 2016 58

FAT32: limitations

■ First FAT32 versions had two important
limitations:

 A maximum partition size of 128 GB:
 Due to the fdisk utility for disk partitioning

 Maximum file size of 4GB:
 Directory entry has a field of 4 bytes for

the file size

Francesco Fontanella, Operating Systems
Spring 2016 59

FAT table size (example)

■ Suppose you have a 1TB (240 bytes) hard disk
drive and the block size is 1KB (210 bytes)

■ How large is its FAT32 ?

■ The disk contains 230 blocks (240/210):
 then table consists of 240 entries
 table entries are 4 bytes (232 bits)

■ The size of the FAT32 table is 232(232 *22), i.e. 4GB

Francesco Fontanella, Operating Systems
Spring 2016 60

Indexed allocation

■ The list of the blocks making up a file is stored in a
separated block(s)

■ To access the file: its index block is loaded in memory,
then the blocks index are read

0, 3,
7, 4

2, 10,
5, 6

0-5

6-11

Name Index

a 2

directory

b 8

Allocatable space

Francesco Fontanella, Operating Systems
Spring 2016 61

■ Advantages
 No external fragmentation
 Efficient direct access
 The index block is loaded in memory

only when the file is open
■ Disadvantages

 Index block size determines the
maximum file size

 too large index blocks cause a big disk
space waste

■ A trade-off must be found

Francesco Fontanella, Operating Systems
Spring 2016 62

Solutions

■ Index blocks concatenation:
 The last element of the index block points to the

next index block
■ Direct access to big files is (time) costly

Name Index

a 0

directory 2, 3,
4, 9

7, 10,
11, nil

0-5

6-11

allocatable space

1, 5,
6, nil

b 8

Francesco Fontanella, Operating Systems
Spring 2016 63

■ Multilevel index blocks:
 An index block for the index blocks
 Performance decreseas, since it

requires more disk accesses

Name Index

a 0

directory 1,2,
nil,nil

10,11,
nil,nil

0-5

6-11

allocatable space

3,4,
7,8

Francesco Fontanella, Operating Systems
Spring 2016 64

Indexed allocation in UNIX

■ Each file is associated to an i-node (index node):
■ An i-node is a data structure containing:

 file attributes
 12 direct block pointers (the indices in the UNIX

jargon)
 1 single indirected block pointers
 1 doubled indirected block pointers
 1 tripled indirected block pointers

■ Each file system (partition) has its own i-node table,
stored at a fixed location

Francesco Fontanella, Operating Systems
Spring 2016 65

Francesco Fontanella, Operating Systems
Spring 2016 66

I-node: allocation and performance

■ Good performance for direct access

■ Small files can be accessed fastly and occupy less disk
space (do not need pointer blocks)

■ Further improvements:
– Pointer blocks can be loaded in memory before they

are actually needed
– Combining contiguous and indexed allocation

• Contiguous, when possible, for small files
• Indexed for larger files

Francesco Fontanella, Operating Systems
Spring 2016 67

File system mounting

■ Before its file can be accessed, any file system
must be mounted

■ Mounting operation requires two parameters:
 The name of the device
 Its location (the mounting point) in the OS

tree (or DAG or graph) structure

http://en.wikipedia.org/wiki/Fdisk
http://en.wikipedia.org/wiki/Fdisk

Francesco Fontanella, Operating Systems
Spring 2016 68

■ Mounting point can be anywhere in the structure

■ The mounting point can be even not empty:
 The contained files and directories are hidden

while a file system is mounted there

■ Explicit file mounting:
 Needs a configuration file for the partitions to be

mounted at the boot (/etc/fstab file in linux)

File system mounting in UNIX

$> mount /dev/fd0 /mnt

Francesco Fontanella, Operating Systems
Spring 2016 70

■ Directory structure is split in two levels:

 a unit letter is associated to each mounted
device and/or partition

■ Automatic boot mounting

File system mounting in WINDOWS

Francesco Fontanella, Operating Systems
Spring 2016 71

■ Every OS has a data structure called mounting table

■ mounting table lists the partitions currently mounted

■ The entry of this table specifies:
 file system type
 device type

■ In the UNIX-based systems, the i-node has a field
indicating if that directory is a mounting point. If so, the
i-node points to the corresponding entry in the
mounting table

The mounting table

Francesco Fontanella, Operating Systems
Spring 2016 72

Virtual File System

■ Multiple file systems may be present
on the same computer (ext2, fat32,
NTFS, CD-ROM, etc).

■ Each file system has its own procedure
for accessing files

■ Different file systems can be managed
using object oriented programming
techniques

Francesco Fontanella, Operating Systems
Spring 2016 73

■ Object oriented programming techniques allow a
clear separation between:

 a common interface consisting of the generic
operations for a file system (open, read, write,
etc.)

 and their implementations for each of the
supported file systems

■ Allows a unique representation for any local or even
network file

Francesco Fontanella, Operating Systems
Spring 2016 76

■ VFS implementation has the following objects:
 Superblock: indicates the file system type
 v-node: describes a file and contains a

unique number for each file
 directory: describes the directories in the

file system

■ To each of these object, it is associated a set of
methods (procedures) that each file system
must support

■ The mounting table is inside the VFS

Francesco Fontanella, Operating Systems
Spring 2016 77

The mounting phase
■ When a file system is mounted, the corresponding

driver (module) must provide to the VFS the addresses
(pointers) of the procedures specified by the interface

■ In practice the driver provides to the VFS the address
of a table of function pointers:

 At each table entry corresponds a given function
(open, write, etc)

 Each function has the same table index in any file
system driver

■ Afterwards, the VFS can access that file system by
simply calling those procedures, by using these agreed
indices

Francesco Fontanella, Operating Systems
Spring 2016 78

Virtual File System implementation

Process
table

file
descriptors

v-nodesv-nodesv-nodes

function
pointers

VFS

Call to the function
of the FS1 driver

 FS1
driver

Read function

Francesco Fontanella, Operating Systems
Spring 2016 79

Virtual File System implementation

Process
table

file
descriptors

v-nodesv-nodesv-nodes

function
pointers

VFS

Call to the function
of the FS1 driver

 FS1
driver

Read function

Francesco Fontanella, Operating Systems
Spring 2016 80

Example

■ The VFS scans the file path and figures out that the on the
directory usr a new file system has been mounted:

 locates the superblock object in the list of the file systems
mounted

 creates a v-node and calls a suitable procedure of the real
file system, which copies into the v-node:

 the information contained in the file control block
 The address of the table of the pointers to the functions

implemented for that v-node (open, read, write, etc)
 finally, a new entry is added to the global file descriptor

table, which points to the just created v-node

fd = open(“/usr/francesco/risultatiSO.txt”, ORDONLY)

Francesco Fontanella, Operating Systems
Spring 2016 83

Free space management

■ A crucial aspect in any file system
concerns the free space management

■ The purpose is to reuse the blocks made
free by file deletion/reduction

■ It needs a data structure for keeping track
of the free blocks

Francesco Fontanella, Operating Systems
Spring 2016 84

Bitmap

■ A bit for each block
■ 0 represents free blocks, while 1

represents occupied blocks

f1 f2 f3

1 1 1 1 1 0 0 1
1 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0

0 1 2 3 4 5 6 7 88 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Francesco Fontanella, Operating Systems
Spring 2016 86

■ advantages
– simple,
– Easy to select contiguous blocks:

 X86 architecture has instructions to find the first
on/off bit in a word

■ disadvantages
– Bitmap storage requires extra space

example
 block size = 4KB (212bytes)
 disk size = 1 TB (240 bytes)
 #blocks = 240 /212 = 228

 Bimap size = 228 bits --> 225 bytes (32 MB)

Francesco Fontanella, Operating Systems
Spring 2016 87

Linked list

■ A linked list of blocks containing the indices (pointers) of
the free blocks

12
35
23
32
33
45
22
11

32
55

27

34

53

65

28

19

39

59

97

94

93

95

08

nil

Free list

Francesco Fontanella, Operating Systems
Spring 2016 88

■ Advantages
 needs small space in main memory:

 it is sufficient to keep in memory only the first
block containing the free block indices

 does not require a special data structure:
 blocks containing the pointers to the free

blocks can be stored in free blocks

■ diasdvantages
 Allocating large areas is costly
 It is very difficult to allocate contiguous blocks

Francesco Fontanella, Operating Systems
Spring 2016 89

FAT
■ Free blocks are stored in a linked list (is a sort of

special file)
■ Very easy to implement

0-5

6-11

Name Start End

a 0 4

directory

b 1 6

allocatable space

3

10

nil

7

nil

6

nil

4

5

FAT

Free list

Francesco Fontanella, Operating Systems
Spring 2016 90

■ Advantages
 Does not require further space in main memory:

 FAT is usually cached in main memory for faster file
accesses

■ Disadvantages
 Allocating large areas is costly
 It is very difficult to allocate contiguous blocks

Francesco Fontanella, Operating Systems
Spring 2016 92

Cluster size

■ Large clusters:
 High read/write speed
 High internal fragmentaton

■ Small clusters
 Low read/write speed
 Low internal fragmentation

© 1995-2002 Andrew S. Tanenbaum

Francesco Fontanella, Operating Systems
Spring 2016 93

Example

■ Suppose that average file size is 2 KB

© 1995-2002 Andrew S. Tanenbaum

Cluster size

Francesco Fontanella, Operating Systems
Spring 2016 94

Directory Implementation

■ Directories
– are special files containing information about files and directories

they contain
– have a certain number of directory entries
– Each directory entry contains the information needed to manage

the corresponding file/directory:
• name
• attributes
• Allocation information

■ Implementation choices:
– Where to store attributes?: directory entry or i-node
– array or hash table?

Francesco Fontanella, Operating Systems
Spring 2016 95

■ directory entries contain all the
information of the file/directory

 used in MS-DOS

■ file/directory informations are
stored in the i-node

 used in UNIX

 name

attributes

allocation info

nome i-node

nome i-node

nome i-node

nome i-node

 name

attributes

allocation info

Francesco Fontanella, Operating Systems
Spring 2016 96

Name length problem

■ Fixed length
– Simplest choice
– Trad-off:

• Too large reserved space: memory waste
• Too small reserved space: too short names

■ Variable length
– more complex data structure

Francesco Fontanella, Operating Systems
Spring 2016 97© 1995-2002 Andrew S. Tanenbaum

Francesco Fontanella, Operating Systems
Spring 2016 98

■ Array
 Simple to implement
 Inefficient for very large directories

■ Hash table
 More complex implementation
 Needs to choose some parameters:

 Table size
 A method for managing collisions

Francesco Fontanella, Operating Systems
Spring 2016 99

DAG structure directories

■ Two possible implementations:
 Symbolic links
 hard links

■ Symbolic links
 Special directory entries, contain the absolute path to

the file
 file access:

 The file is searched in the directory
 It is found that it is a symbolic link
 The link is resolved: the absolute path is used to

access the file

Francesco Fontanella, Operating Systems
Spring 2016 100

■ Hard link
 File informations are copied in both directories
 More efficient:

 does not need two searches in the file system
 It is impossible to distinguish the original file from the

copies
 Implementation

 Needs i-node like implementation
 i-node contain a reference counter

■ Several file systems do not implement DAG structures
(links)
Example: MS-DOS

Francesco Fontanella, Operating Systems
Spring 2016 101

Hard-link: example

■ DAG structures are more flexible than tree structure, but it creates
many problems

EXAMPLE
– an OS has three users, A,B, C

Owner= C
Count = 1

file

Directory of C

Owner= C
Count = 2

file

directory of C

Owner= C
Count = 1

file

Directory di Bdirectory of B

user B creates a hard link
to a file in the directory of C

user C deletes the file
in its directory

now (only) B dir contains a file
whose owner is C!

Francesco Fontanella, Operating Systems
Spring 2016 102

Performance improvements

recently used
blocks cache

File desriptor table
of the open files

DMA block buffer

track buffer

 Main memory

 controller

Francesco Fontanella, Operating Systems
Spring 2016 104

Performance

■ Adding instructions to the execution path to save one disk
I/O is a very good solution:

 Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz =
159,000 MIPS

 Typical disk drive at 250 I/Os per second
 159,000 MIPS / 250 = 630 million instructions during

one disk I/O
 Fast SSD drives provide 60,000 IOPS
 159,000 MIPS / 60,000 = 2.65 million instructions

during one disk I/O

Francesco Fontanella, Operating Systems
Spring 2016 105

Block cache

head (LRU) tail (LRU)hash table

Francesco Fontanella, Operating Systems
Spring 2016 106

Block cache management

■ Different types of blocks:
 Data blocks
 System blocks (contain i-nodes or directories)
 Partially full blocks

■ System blocks are usually updated as soon as possible
■ Users can force updating (buffer flush operations)
■ UNIX

 A system daemon periodically (some secs) updates
data blocks

■ Windows
 Blocks are updated as soon as possible: safe, but

requires much more disk I/O operations

Francesco Fontanella, Operating Systems
Spring 2016 107

Read-ahead strategy

■ Another strategy for performance improvement
consists in trying to move up (predict) the loading of
the next blocks, before they are actually requested

■ Possible strategy:
 When the block K is requested, also loads the

block K+1
 Works well for sequential access

■ for each file, the access pattern could be stored, in
order to predict whether the read-ahead strategy is
useful or not.

Francesco Fontanella, Operating Systems
Spring 2016 108

I-node table positioning

■ The optimal positioning of the i-node table allows
reducing disk arm movements

Francesco Fontanella, Operating Systems
Spring 2016 109

Coherence cache block techniques

■ Caching mechanisms may cause inconsistency problems
Example
Sudden power failures

■ This problem is particularly serious for blocks containing
FAT, bitmap, i-node and directories

■ Two solutions:
 healing (file system checker)

 fsck, scandisk
 preventing (journaling file system)

 ext3, reiserfs

Francesco Fontanella, Operating Systems
Spring 2016 110

Block coherence checking
■ Two tables (initialized to 0) each entry represents a disk

block:
 used[i]:

• counts how many times the block i is present in the
block list of a file
 Obtained by analyzing all files in the file system to

be checked
– free[i]

• counts how many times the block i is present in the
free block list

• Can be obtained by:
–scanning the free block list, or
–copying the bitmap

Francesco Fontanella, Operating Systems
Spring 2016 111

■ free[i] + used[i] = 1
 The block is ok

■ free[i] + used[i] = 0
 Missing block: neither free or used
 problem: wasted space, but no coherence problem
 action: move the block back to the free block list

■ free[i] = N (N > 1, used[i] = 0
 It appears N times in the free block list
 problem: no coherence problem (at the moment),

but the block could be assigned again (up to N times)
 action: keeping only one instance

Francesco Fontanella, Operating Systems
Spring 2016 112

■ free[i] = 1, used[i] = 1
 The block is either free and used
 problem: no coherence problem (at the moment),

but the block could be assigned again
 action: remove the block from the free block list

■ used[i] = N (N > 1) free[i] = 0
 the block is being used N times
 problem: coherence problem!
 actions:

 create N copies of the block
 Assign each block to a different file

Francesco Fontanella, Operating Systems
Spring 2016 113

File system and crash

■ Deleting a files implies:
 removing the associated entry from the parent

directory
 restoring the i-node in the free i-node list
 moving back in the free block list all the blocks used

by the file

■ What happens if the system crashes (e.g. power failure)
while one of these operations is being executed?

Francesco Fontanella, Operating Systems
Spring 2016 114

Journaling-based file systems
■ Every transaction is stored in a log file (the journal)

■ A transaction is considered completed (committed) once
it has been stored in the log file. Nonetheless the file
system could be not updated yet

■ Periodically, all transactions in the log file are actually
executed

■ Once executed the transcations is removed from the log
file

NOTE
Before being executed, log file transactions
are read again in order to check their integrity

Francesco Fontanella, Operating Systems
Spring 2016

Example: the MS-DOS file system

■ File names:
 8+3 characters
 Block indices: 12-16 bits (MS-DOS, W95), 32 bits (W98)

© 1995-2002 Andrew S. Tanenbaum

Francesco Fontanella, Operating Systems
Spring 2016 116

FAT-12 FAT-16 FAT-32

0.5 KB 2 MB
1 KB 4 MB
2 KB 8MB 128 MB
4 KB 16MB 256 MB 1 TB
8 KB 512 MB 2 TB
16 KB 1024 MB 2 TB
32 KB 2048 MB 2 TB

block size

Francesco Fontanella, Operating Systems
Spring 2016

Example: the UNIX V7 file system

Francesco Fontanella, Operating Systems
Spring 2016

■ Partitions are divided into several block groups.
■ Each block group duplicates the superblock, as

well as other information critical for the file
system integrity

■ This information is necessary in case of disaster
recovery

Ext2 file system

Francesco Fontanella, Operating Systems
Spring 2016

Ext2 file system

Francesco Fontanella, Operating Systems
Spring 2016

Superblock

■ The superblock contains the following informations:
 Magic number: allows to check that this is indeed the

Superblock for an EXT2 file system. For the current version
of EXT2 this is 0xEF53

 Revision Level: The major and minor revision levels allow
the mounting software to determine whether or not this file
system supports features that are only available in
particular revisions of the file system. There are also
feature compatibility fields which help the mounting
software to determine which new features can safely be
used on this file system

http://en.wikipedia.org/wiki/Instructions_per_second

Francesco Fontanella, Operating Systems
Spring 2016

■ Each Block Group has a data structure describing it. Like the
Superblock, all the group descriptors for all of the Block Groups
are duplicated in each Block Group in case of file system
corruption. Each Group Descriptor contains the following
information:

 Blocks Bitmap: The block number of the block allocation
bitmap for this Block Group. This is used during block
allocation and deallocation

 Inode Bitmap: The block number of the inode allocation
bitmap for this Block Group. This is used during inode
allocation and deallocation,

 Inode Table: The block number of the starting block for the
inode table for this Block Group. Each inode is represented
by the EXT2 inode data structure described below.

Block group descriptors

Francesco Fontanella, Operating Systems
Spring 2016

 Free blocks count, Free Inodes count, Used directory
count

■ The group descriptors are placed on after another and together
they make the group descriptor table. Each Blocks Group
contains the entire table of group descriptors after its copy of
the Superblock. Only the first copy (in Block Group 0) is actually
used by the EXT2 file system. The other copies are there, like
the copies of the Superblock, in case the main copy is
corrupted.

http://en.wikipedia.org/wiki/Daemon_(computing)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 49
	Slide 50
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	File System Mounting
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 83
	Slide 84
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 124
	Slide 125

