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Introduction
The Second Extended Filesystem (Ext2) was introduced in 1994, to substitute the extedended File
System (ext FS), which offered unsatisfactory performance. Ext2 is quite efficient and robust and
has  become  the  most  widely  used  Linux  filesystem.  The  following  features  contribute  to  the
efficiency of Ext2:

• When creating an Ext2 filesystem, the optimal block size (from 1,024 to 4,096 bytes) can be
chosen, depending on the expected average file length. For instance, a 1,024-block size is
preferable when the average file length is smaller than a few thousand bytes because this
leads  to  less  internal  fragmentation.  Larger  block  sizes  are  instead  preferable  when  the
average file length is expected to be greater than a few thousand bytes. This leads to fewer
disk transfers, thus reducing system overhead.

• When creating an Ext2 filesystem, the system administrator may choose how many inodes
to allow for a partition of a given size, depending on the expected number of files to be
stored on it. This maximizes the effectively usable disk space.

• The Ext2 file system divides the logical partition that it occupies into Block Groups. Each
group includes data blocks and inodes stored in adjacent tracks. Thanks to this structure,
files stored in a single block group can be accessed with a lower average disk seek time.

• The filesystem preallocates disk data blocks to regular files before they are actually used.
Thus,  when  the  file  increases  in  size,  several  blocks  are  already  reserved  at  physically
adjacent positions, reducing file fragmentation. 

• Fast symbolic links are supported. If the pathname of the symbolic link is less than 60 bytes
long, it is stored in the inode and can thus be translated without reading a data block.

The ext2 File System also includes other features that make it both robust and flexible: 
•  A careful implementation of the file-updating strategy that minimizes the impact of system

crashes. For instance, when creating a new hard link for a file, the counter of hard links in
the disk inode is incremented first, and the new name is added into the proper directory next.
In this way, if a hardware failure occurs after the inode update but before the directory can
be changed,  the  directory  is  consistent,  even if  the  inode’s  hard  link  counter  is  wrong.
Deleting the file does not lead to catastrophic results, although the file’s data blocks cannot
be automatically reclaimed. If the reverse were done (changing the directory before updating
the inode), the same hardware failure would produce a dangerous inconsistency: deleting the
original hard link would remove its data blocks from disk, yet the new directory entry would
refer to an inode that no longer exists. If that inode number were used later for another file,
writing into the stale directory entry would corrupt the new file.



• Support for automatic consistency checks on the filesystem status at boot time. The checks
are performed by the e2fsck external program, which may be activated not only after a
system crash,  but  also after  a  predefined number  of  filesystem mountings  (a  counter  is
incremented after each mount operation) or after a predefined amount of time has elapsed
since the most recent check. 

• Support for immutable files (they cannot be modified, deleted, or renamed) and for append-
only files (data can be added only to the end of them). The second option can be useful for
log files.

• Compatibility with both the Unix System V Release 4 and the BSD semantics of the Group
ID for a new file. In SVR4, the new file assumes the Group ID of the process that creates it;
in BSD, the new file inherits the Group ID of the directory containing it. Ext2 includes a
mount option that specifies which semantic is used.

The Ext2 filesystem is a mature, stable program, and it has not evolved significantly in recent years.
Several  additional  features,  however,  have  been  considered  for  inclusion.  Some  of  them have
already been coded and are available as external patches. Others are just planned, but in some cases,
fields have already been introduced in the Ext2 inode for them. The most significant features being
considered are: 
Block fragmentation 

System administrators usually choose large block sizes for accessing disks because computer
applications often deal with large files. As a result, small files stored in large blocks waste a lot
of disk space. This problem can be solved by allowing several files to be stored in different
fragments of the same block.

Access Control Lists (ACL) 
Instead of classifying the users of a file under three classes—owner, group, and others—this
list  is  associated  with  each  file  to  specify  the  access  rights  for  any  specific  users  or
combinations of users. 

Handling of transparently compressed and encrypted files 
These new options, which must be specified when creating a file, allow users to transparently
store compressed and/or encrypted versions of their files on disk. 

Logical deletion 
An undelete  option  allows users  to  easily  recover,  if  needed,  the contents  of  a  previously
removed file. 

Journaling 
Journaling avoids the time-consuming check that is automatically performed on a filesystem
when it is abruptly unmounted—for instance, as a consequence of a system crash.

The following sections describe in more detail the Ext2 filesystem. 

The Ext2 inode
In the Ext2 file system, the inode is the basic building block; every file and directory in the file
system is described by one and only one inode. The Ext2 inodes for each Block Group are kept in
the  inode  table  together  with  a  bitmap  that  allows  the  system to  keep  track  of  allocated  and
unallocated inodes.  Figure 1 shows the format of an Ext2 inode,  amongst other information,  it
contains the following fields:
mode

This holds two pieces of information; what does this inode describe and the permissions that
users have to it. For Ext2, an inode can describe one of file, directory, symbolic link, block
device, character device or FIFO.

Owner Information
The user and group identifiers of the owners of this file or directory. This allows the file system
to correctly allow the right sort of accesses,



Size
The size of the file in bytes.

Timestamps
The time that the inode was created and the last time that it was modified.

Datablocks
Pointers to the blocks that contain the data that this inode is describing. The first twelve are
pointers to the physical blocks containing the data described by this inode and the last three
pointers contain more and more levels of indirection. For example, the double indirect blocks
pointer points at a block of pointers to blocks of pointers to data blocks. This means that files
less than or equal to twelve data blocks in length are more quickly accessed than larger files.

You should note that Ext2 inodes can describe special  device files. These are not real files but
handles that programs can use to access devices. All of the device files in /dev are there to allow
programs to access Linux's devices. For example the mount  program takes the device file that it
wishes to mount as an argument.

Disk data Structure
In any Ext2 partition, the first block is reserved for the partition boot sector. The rest of the Ext2
partition is split into block groups (see Figure 2). All block groups in the filesystem have the same
size and are stored sequentially. This allows the kernel to easily derive the location of a block group
in a disk from its integer index. Moreover,  some data structures must fit in exactly one block, while
others may require more than one block

Block  group splitting  reduce  file  fragmentation,  since  the  kernel  tries  to  keep  the  data  blocks
belonging to a file in the same block group, if possible. Every block group contains the following
pieces of information: 

• A copy of the filesystem’s superblock 
• A copy of the block group descriptors 
• A data block bitmap which  is used to identify the free blocks inside the group
• An inode bitmap, which is  used to identify the free inodes inside the group
• inode table: it consists of a series of consecutive blocks, each of which contains a predefined

Figure 1 Ext2 inode



number of inodes. All inodes have the same size: 128 bytes. A 1,024 byte block contains 8
inodes, while a 4,096-byte block contains 32 inodes. Note that in Ext2, there is no need to
store on disk a mapping between an inode number and the corresponding block number
because  the  latter  value  can  be  derived  from the  block  group  number  and  the  relative
position inside the inode table. For example, suppose that each block group contains 4,096
inodes and that we want to know the address on disk of inode 13,021. In this case, the inode
belongs to the third block group and its disk address is stored in the 733rd entry of the
corresponding inode table. As you can see, the inode number is just a key used by the Ext2
routines to retrieve the proper inode descriptor on disk quickly

• data blocks, containing files. Any block which does not contain any meaningful information,
it is said to be free.

Note that  although both the superblock and the group descriptors  are  duplicated in  each block
group, only the superblock and the group descriptors included in block group 0 are used by the
kernel, while the remaining superblocks and group descriptors are left unchanged. In fact, the kernel
doesn’t even look at them. When the e2fsck program executes a consistency check on the filesystem
status, it refers to the superblock and the group descriptors stored in block group 0, and then copies
them into all other block groups. If data corruption occurs and the main superblock or the main
group descriptors in block group 0 becomes invalid, the system administrator can instruct e2fsck to
refer to the old copies of the superblock and the group descriptors stored in a block groups other
than the first. Usually, the redundant copies store enough information to allow e2fsck to bring the
Ext2 partition back to a consistent state. 

As  concerns the block group number in a partition, it depends both on the partition size and the
block size. This constraint depends on the fact that the block bitmap must be stored in a single
block. Therefore, in each block group, there can be at most 8×b blocks, where b is the block 
size in bytes. Thus, the total number of block groups is roughly s/(8×b), where s is the partition size
in blocks. For example, if we consider an 8 GB Ext2 partition with a 4-KB block size, each 4-KB
block bitmap describes 32K data blocks—that is, 128 MB. Therefore, at most 64 block groups are
needed. Clearly, the smaller the block size, the larger the number of block groups.

The superblock
The Superblock contains a description of the basic size and shape of this file system. Usually only
the Superblock in Block Group 0 is read when the file system is mounted but each Block Group
contains a duplicate copy in case of file system corruption. Amongst other information it holds the:
Magic Number

This allows the mounting software to check that this is indeed the Superblock for an Ext2 file
system. For the current version of Ext2 this is 0xEF53.

Figure 2 Ext2 partition layout



Revision Level
The major and minor revision levels allow the mounting code to determine whether or not this
file system supports features that are only available in particular revisions of the file system.
There are also feature compatibility fields which help the mounting code to determine which
new features can safely be used on this file system.

Mount Count and Maximum Mount Count
Together these allow the system to determine if the file system should be fully checked. The
mount  count  is  incremented  each time the  file  system is  mounted  and when it  equals  the
maximum mount count the warning message ``maximal mount count reached, running e2fsck
is recommended'' is displayed.

Block Group Number
The Block Group number that holds this copy of the Superblock,

Block Size
The size of the block for this file system in bytes, for example 1024 bytes,

Blocks per Group
The number of blocks in a group. Like the block size this is fixed when the file system is
created,

Free Blocks
The number of free blocks in the file system,

Free inodes
The number of free inodes in the file system,

First inode
This is the inode number of the first inode in the file system. The first inode in an Ext2 root file
system would be the directory entry for the '/' directory.

The Group Descriptor
Each Block Group has a data structure describing it. Like the Superblock, all the group descriptors
for all of the Block Groups are duplicated in each Block Group in case of file system corruption.
Each Group Descriptor contains the following information:
Blocks Bitmap

The  block  number  of  the  block  bitmap  for  this  Block  Group.  This  is  used  during  block
allocation and deallocation.

inode Bitmap
The block number of the inode allocation bitmap for this Block Group. This is used during
inode allocation and deallocation.

inode Table
The block number of the starting block for the inode table for this Block Group. Each inode is
represented by the Ext2 inode data structure described below.

Free blocks count, Free Inodes count, Used directory count
The name of this fields is self-explanatory

Note that the group descriptors  are placed one after another and together they make the group
descriptor table. Each Blocks Group contains the entire table of group descriptors after its copy of
the Superblock. Only the first copy (in Block Group 0) is actually used by the Ext2 file system. The
other copies are there, like the copies of the Superblock, in case the main copy is corrupted.

Directories
Ext2 implements directories as a special kind of file, which contain file names together with the
corresponding inode numbers. A directory file is a list of directory variable length entries,  each one
containing the following information:
inode number



The inode number  for this directory entry. This entry is 4 byte long.
Entry length

This entry is 2 bytes long and contains the length of this directory entry in bytes. Note that this
field may be interpreted as a pointer to the next valid directory entry: it is the offset to be added
to  the  starting  address  of  the  directory  entry  to  get  the  starting  address  of  the  next  valid
directory entry. To delete a directory entry, it is sufficient to set its inode field to 0 and suitably
increment the value of the rec_len field of the previous valid entry. In the example shown in
Figure ??, the fifth entry of Figure ??  (describing the file named “oldfile”) was deleted because
the field of usr is set to 12+16 (the lengths of the usr and oldfile entries).

Name length
The length of the file name (1 byte)

File type
The type of file (1 byte). Eigth type of files are possible: unknown , regular file, directory ,
character device , block device , named pipe , socket , symbolic link.

The name of this directory entry
This  field  is  a  variable  length  array  of  up  to  Ext2_NAME_LEN characters  (usually  255).
Moreover, for reasons of efficiency, the length of a directory entry is always a multiple of 4
and,  therefore,  null  characters  (  \0  )  are  added for  padding at  the  end of  the  filename,  if
necessary.

Memory data structures
For the sake of efficiency, most information stored in the disk data structures of an Ext2 partition
are copied into RAM when the filesystem is mounted, thus allowing the kernel to avoid many, slow,
subsequent disk read operations. To get an idea of how often some data structures change, consider
some fundamental operations: 

• When a new file is created, the values of the free inodes count field in the superblock and of
the free inodes count field in the proper group descriptor must be decremented. 

• If  the  kernel  appends  some data  to  an  existing  file  so  that  the  number  of  data  blocks
allocated for it increases, the values of the  free blocks count field in the superblock and of
the  free blocks count field in the group descriptor must be modified. 

• Even just rewriting a portion of an existing file involves an update of the  last write time
field of the Ext2 superblock. 

Since all Ext2 disk data structures are stored in blocks of the Ext2 partition, the kernel uses the
buffer cache and the page cache to keep them up to date. Table 2 specifies, for each type of data
related to Ext2 filesystems, the way they are cached in memory. As one may expect, very frequently
updated data is always cached; that is, the data is permanently stored in memory and included in the
buffer cache or in the page cache until the corresponding Ext2 partition is unmounted. Thus it is

Figure 3 Example of an Ext2 directory



never necessary to read the this data from disk (periodically, however, the data must be written back
to disk).  As concerns  the  dynamic mode,  instead,   the data  is  kept  in  a cache as long as the
associated object (inode, data block, or bitmap) is in use; when the file is closed or the data block is
deleted,  the  page  frame reclaiming algorithm may remove the  associated  data  from the  cache.
Finally,  the never-cached data,  is  not  kept  in  any cache since it  does not represent  meaningful
information.  In between these extremes lies the. 
It is worth noting that inode and block bitmaps are not kept permanently in memory; rather, they are
read from disk when needed. Actually, many disk reads are avoided thanks to the page cache, which
keeps in memory the most recently used disk blocks. 

Creating the Ext2 Filesystem
There are generally two stages to creating a filesystem on a disk. The first step is to format it so that
the disk driver can read and write blocks on it. Modern hard disks come preformatted from the
factory  and need  not  be  reformatted;  floppy disks  may  be  formatted  on  Linux  using  a  utility
program such as superformat or fdformat. The second step involves creating a filesystem, which
means setting up the structures described earlier . Ext2 filesystems are created by the mke2fs utility
program; it assumes the following default options, which may be modified by the user with flags on
the command line: 

• Block size: 1,024 bytes (default value for a small filesystem) 
• Fragment size: block size (block fragmentation is not implemented) 
• Number of allocated inodes: 1 inode for each 8,192 bytes 
• Percentage of reserved blocks: 5 percent

The program performs the following actions: 
1. Initializes the superblock and the group descriptors. 
2. Optionally, checks whether the partition contains defective blocks; if so, it creates a list of

defective blocks. 
3. For each block group, reserves all the disk blocks needed to store the superblock, the group

descriptors, the inode table, and the two bitmaps. 
4. Initializes the inode bitmap and the data map bitmap of each block group to 0. 
5. Initializes the inode table of each block group. 
6. Creates the /root directory. 
7. Creates the lost+found directory, which is used by e2fsck to link the lost and found defective

blocks. 
8. Updates the inode bitmap and the data block bitmap of the block group in which the two

previous directories have been created. 
9. Groups the defective blocks (if any) in the lost+found directory. 

Table 1 Caching mode of the Ext2 data structures

Type Caching mode
Superblock Always cached
Group descriptor Always cached
Block bitmap Dynamic
Inode bitmap Dynamic
Inode Dynamic
Data block Dynamic
Free inode Never
Free block Never



Let's us consider, for example, how an Ext2 1.44 MB floppy disk is initialized by mke2fs with the
default options. Once mounted, it appears as a volume consisting of 1,412 blocks; each one is 1,024
bytes in length.  The floppy disk layout after the Ext2  file system creation is shown in Table 2.

Finding a File in an Ext2 File System
A Linux filename has the same format as all Unix filenames have. It is a series of directory names
seperated by forward slashes (“/”) and ending in the file's name. One example filename would be
“/home/francesco/myfile.txt” where /home and /francesco are directory names and the file's name is
myfile.txt.  Note that the in Linux the filename can be of any length and contain any printable
character. To find the inode representing this file within an Ext2 file system the system must parse
the filename a directory at a time until we get to the file itself.
The first inode that we need is the inode  number for the root of the file system, which is available
in the file system's superblock. To read an Ext2 inode we must look for it in the inode table of the
appropriate Block Group. If, for example, the root inode number is 42 then we need the 42nd inode
from the inode table of Block Group 0. The root inode describes a directory and it's data blocks
contain Ext2 directory entries.  Home is just one of the many directory entries and this directory
entry  gives  us  the  number  of  the  inode  describing  the  /home directory.  We have  to  read  this
directory (by first  reading its inode and then reading the directory entries from the data blocks
described  by  its  inode)  to  find  the  francesco  entry  which  gives  us  the  number  of  the  inode
describing the /home/francesco directory. Afterwards, we read the directory entries contained in the
blocks pointed indexed by the inode describing the /home/francesco directory to find the inode
number  of  the  myfile.txt  file.  Finally,  from  this  inode  we  get  the  data  blocks  containing  the
information in the file.

File size changing
One common problem with a file system is its tendency to fragment. The blocks that hold the file's
data get spread all over the file system and this makes sequentially accessing the data blocks of a
file more and more inefficient the further apart the data blocks are. The Ext2 file system tries to
overcome this by allocating the new blocks for a file physically close to its current data blocks or at
least in the same Block Group as its current data blocks. Only when this fails does it allocate data
blocks in another Block Group.
Whenever a process attempts to write data into a file the Linux file system checks to see if the data
has gone off the end of the file's last allocated block. If it has, then it must allocate a new data block
for this file. Until the allocation is complete, the process cannot run, it must wait for the file system
to allocate a new data block and write the rest of the data to it before it can continue. The first thing
that  the  Ext2  block allocation  routines  do is  to  lock  the  Ext2  Superblock for  this  file  system.

Table 2 Ext2 block allocation for a floppy disk (default options)

Block Content
0 Boot block
1 Superblock
2 Block containing a single block group descriptor
3 Data block bitmap
4 inode bitmap
5-27 inode table: inodes up to 10: reserved (inode 2 is the root); inode 11: lost+found; inodes 12–184: free
28 Root directory (includes . , .. , and lost+found)
29 lost+found directory (includes . and .. )
30-40 Reserved blocks preallocated for lost+found directory
41-1439 Free blocks



Allocating and deallocating changes fields within the superblock and the Linux file system cannot
allow more than one process to do this at the same time. If another process needs to allocate more
data blocks  then  it  will  have to  wait  until  this  process  has  finished.  Processes  waiting  for  the
superblock are  suspended,  unable  to  run,  until  control  of  the  superblock is  relinquished by its
current user.  Access to the superblock is granted on a first come, first served basis and once a
process has control of the superblock then it keeps control until it has finished. Having locked the
superblock, the process checks that there are enough free blocks left in this file system. If there are
not enough free blocks then this attempt to allocate more will fail and the process will relinquish
control  of this  file  system's superblock.  If  there are  enough free blocks  in  the file  system, the
process tries to allocate one. 
If the Ext2 file system has been built to preallocate data blocks then we may be able to take one of
those. The preallocated blocks do not actually exist, they are just reserved within the allocated block
bitmap. The VFS inode representing the file that we are trying to allocate a new data block for has
two Ext2 specific fields, prealloc_block and prealloc_count which are the block number of the first
preallocated data block and how many of them there are respectively. If there were no preallocated
blocks or block preallocation is not enabled, the Ext2 file system must allocate a new block. The
Ext2 file system first looks to see if  the data block after the last  data block in the file is free.
Logically, this is the most efficient block to allocate as it makes sequential accesses much quicker.
If this block is not free, then the search widens and it looks for a data block within 64 blocks of the
ideal block. This block, although not ideal is at least fairly close and within the same Block Group
of the other data blocks belonging to this file.
If even that block is not free, the process starts looking in all of the other Block Groups in turn until
it finds some free blocks. The block allocation code looks for a cluster of eight free data blocks
somewhere in one of the Block Groups. If it cannot find eight together, it will settle for less. If
block  preallocation  is  wanted  and  enabled  it  will  update  prealloc_block  and  prealloc_count
accordingly.
Wherever it found the free block, the block allocation code updates the Block Group's block bitmap
and allocates a data buffer in the buffer cache. That data buffer is uniquely identified by the file
system's supporting device identifier and the block number of the allocated block. The data in the
buffer is zero'd and the buffer is marked as ``dirty'' to show that it's contents have not been written
to the physical disk. Finally, the superblock itself is marked as ``dirty'' to show that it has been
changed and it is unlocked. If there were any processes waiting for the superblock, the first one in
the queue is  allowed to run again and will  gain exclusive control of the superblock for its  file
operations. The process's data is written to the new data block and, if that data block is filled, the
entire process is repeated and another data block allocated.

The Ext3 Filesystem 
The Ext3 file system is an enhanced filesystem that has evolved from Ext2. Developers had two
main objectives, while designing the Ext3 file system: to be a journaling filesystem; To be, as much
as possible, compatible with the old Ext2 filesystem . Ext3 achieves both the goals very well. In
particular, it is largely based on Ext2, so its data structures on disk are essentially identical to those
of an Ext2 filesystem. In practice, cleanly unmounted Ext3 filesystems can be remounted as an Ext2
filesystems;  conversely,  creating  a  journal  of  an Ext2  filesystem and remounting  it  as  an Ext3
filesystem is a simple, fast operation. Thanks to the compatibility between Ext3 and Ext2, most
descriptions in the previous sections also apply to Ext3. 

Journaling file systems
Updates to filesystem blocks might be kept in dynamic memory for long period of time before
being flushed to disk. Events such as a power-down failure or a system crash might thus leave the
filesystem in an inconsistent state. To overcome this problem, each traditional Unix filesystem is
checked before being mounted; if it  has not been properly unmounted,  then a specific program



executes an exhaustive, time-consuming check and fixes all the filesystem’s data structures on disk.
For instance, the Ext2 filesystem status is stored in the mount state field of the superblock on disk.
The e2fsck utility program is invoked by the boot script to check the value stored in this field; if  the
filesystem was not properly unmounted, the e2fsck starts checking all disk data structures of the
filesystem. The time spent  depends on the number of files and directories to be examined and
mainly on the disk size.  With filesystems reaching hundreds  of  gigabytes,  a  single consistency
check may take hours, a downtime which may result unacceptable for many systems. The goal of a
journaling  filesystem  is  to  avoid  running  time-consuming  consistency  checks  on  the  whole
filesystem  by  looking  instead  in  a  special  disk  area  that  contains  the  most  recent  disk  write
operations named journal. Remounting a journaling filesystem after a system failure is a matter of a
few seconds. 

The Ext3 Journaling Filesystem 
The idea behind Ext3 journaling is to perform each high-level change to the filesystem in two steps.
First, a copy of the blocks to be written is stored in the journal; then, when the I/O data transfer to
the journal is completed (in short, data is  committed to the journal), the blocks are written in the
filesystem.  When  the  I/O  data  transfer  to  the  filesystem terminates  (data  is  committed  to  the
filesystem), the copies of the blocks in the journal are discarded.
While recovering after a system failure, the e2fsck program distinguishes the following two cases: 
The system failure occurred before a commit to the journal. Either the copies of the blocks

relative to the high-level change are missing from the journal or they are incomplete; in both
cases, e2fsck ignores them. 

The system failure occurred after a commit to the journal. The copies of the blocks are valid,
and e2fsck writes them into the filesystem. 

In the first  case,  the high-level change to the filesystem is lost,  but the filesystem state is still
consistent.  In  the  second  case,  e2fsck  applies  the  whole  high-level  change,  thus  fixing  every
inconsistency due to unfinished I/O data transfers into the filesystem.
It is worth noting that journaling  ensures consistency only at the system call level. For instance, a
system failure that occurs while you are copying a large file by issuing several  write() system
calls will interrupt the copy operation, thus the duplicated file will be shorter than the original one. 
Furthermore, journaling filesystems do not usually copy all blocks into the journal. In fact, each
filesystem consists  of  two  kinds  of  blocks:  those  containing  the  so-called  metadata  and  those
containing regular data. In the case of Ext2 and Ext3, there are six kinds of metadata: superblocks,
group  block  descriptors,  inodes,  blocks  used  for  indirect  addressing  (indirection  blocks),  data
bitmap blocks, and inode bitmap blocks. Other filesystems may use different metadata.
Several journaling filesystems, such as SGI’s XFS and IBM’s JFS, limit themselves to logging the
operations  affecting  metadata.  In  fact,  metadata’s  log  records  are  sufficient  to  restore  the
consistency of the on-disk filesystem data structures. However, since operations on blocks of file
data are not logged, nothing prevents a system failure from corrupting the contents of the files. 

The Ext3 filesystem, however, can be configured to log the operations affecting both the filesystem
metadata and the data blocks of the files. Because logging every kind of write operation leads to a
significant performance penalty, Ext3 lets the system administrator decide what has to be logged; in
particular, it offers three different journaling modes: 
Journal 

All filesystem data and metadata changes are logged into the journal. This mode minimizes the
chance of losing the updates made to each file, but it requires many additional disk accesses. For
example, when a new file is created, all its data blocks must be duplicated as log records. This is
the safest and slowest Ext3 journaling mode. 

Ordered 
Only changes to filesystem metadata are logged into the journal. However, the Ext3 filesystem
groups metadata and relative data  blocks  so that  data  blocks  are  written to  disk before the



metadata. This way, the chance to have data corruption inside the files is reduced; for instance,
each write access that enlarges a file is guaranteed to be fully protected by the journal. This is
the default Ext3 journaling mode. 

Writeback 
Only  changes  to  filesystem  metadata  are  logged;  this  is  the  method  found  on  the  other
journaling filesystems and is the fastest mode. 

The  journaling  mode  of  the  Ext3  filesystem  is  specified  by  an  option  of  the  mount  system
command. For instance, to mount an Ext3 filesystem stored in the /dev/sda2 partition on the /jdisk
mount point with the “writeback” mode, the system administrator can type the command: 
# mount ­t ext3 ­o data=writeback /dev/sda2 /jdisk
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