“The hardest single part of building a software system is deciding
precisely what to build. No other part of the conceptual work is as
difficult as establishing the detailed technical requirements...No
other part of the work so cripples the resulting system if done wrong.

No other part is as difficult to rectify later.”

F.P. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering”

O

UNIVERSITY OF OREGON e CIS 422
BY

What is a “software requirement?”

Definition: A description of something the software must do or
property it must have

The set of system requirements denote the problem to be
solved and any constraints on the solution

Ideally, requirements specify precisely what the software must do
without describing how to do it

Any system that meets requirements should be an acceptable
implementation

O

UNIVERSITY OF OREGON e CIS 422
BY

Requirements Phase Goals

What does “getting the requirements right” mean in the systems
development context?

Only three goals
1. Understand precisely what is required of the software

2. Communicate that understanding to all of the parties involved in the
development (stakeholders)

3. Control production to ensure the final system satisfies the
requirements

Sounds easy but hard to do in practice

Understanding what makes these goals difficult to accomplish
helps us understand how to mitigate the risks

O

UNIVERSITY OF OREGON e CIS 422
BY

What makes requirements difficult?

Comprehension (understanding)
People don’t (really) know what they want (...until they see it)
Superficial grasp is insufficient to build correct software

Communication

People work best with regular structures, conceptual coherence, and
visualization

Software’s conceptual structures are complex, arbitrary, and difficult to visualize

Control (predictability, manageability)
Difficult to predict which requirements will be hard to meet
Requirements change all the time
Together can make planning unreliable, cost and schedule unpredictable

Inseparable Concerns

Many requirements issues cannot be cleanly separated (l.e., decisions about one
necessarily impact another)

Difficult to apply “divide and conquer”
Must make tradeoffs where requirements conflict

UNIVERSITY OF OREGON e CIS 422
BY

O

1.1 Elicitation

Goal: Understand precisely what is required of the software
Answer the question, “What do the stakeholders want?”

Stakeholder: anyone with a valid interest in the outcome of a software
development

Inherently open-ended, ambiguous question

Addressed by a number of elicitation methods
Interview — traditional standard
Focus groups
Prototyping
Scenario analysis (next), etc.

All have differing costs, strengths, and weaknesses. None is a
complete solution
Use more than one approach
Check the results early and often

O

UNIVERSITY OF OREGON e CIS 422
BY

Needs of Different Audiences

Customer/User
Focus on problem understanding
Use language of problem domain

Technical if problem space is
technical

Development organization

Focus on system/software
solutions

Use language of solution space
(software)

Precise and detailed enough to
write code, test cases, etc.

Problem Understanding/
Business Needs

/ Customer

Requirements
Analyst

Detailed technical
Requirements

Developer

O UNIVERSITY OF OREGON e CIS 422

SRS Template

1. Introduction

1.1 Intended Audience and Purpose

<Describes the set of stakeholders and what each stakeholder is expected to use the document for. If some
stakeholders are more important than others, describes the priorities >

1.2 How to use the document

<Describes the document organization. This section should answer for the reader: “Where do I find
particular information about X?”’>

2. Concept of Operations

<Use this section to give a detailed description of the system requirements from a user's point of view. The
ConOps should be readable by any audience familiar with the application domain but not necessarily with
software. The ConOps should make clear the context of the software and the capabilities the system will
provide the user.>

Informal, user; 2.1 System Context

centric <Specify the system boundaries including, particularly, the inputs and outputs. May include an illustration
or context diagram. >

2.2 System capabilities

— <System capabilities may be described in prose or with informal scenarios.>

3. Behavioral Requirements

<Specification of the observable system behavior >

3.1 System Inputs and Outputs

e

Formal, technical
3.2 Detailed Output Behavior

<A black box specification of the visible, required behavior of the system outputs as a function of the
UNIVE system inputs. Tables, functions, use cases or other methods of specification may be used.>

Informal Specification Techniques

Most requirements specification methods are informal
Natural language specification
Use cases
Mock-ups (pictures)
Story boards

Benefits

Requires little technical expertise to read/write
Useful for communicating with a broad audience

Useful for capturing intent (e.g., how does the planned system address
customer needs, business goals?)

Drawbacks
Inherently ambiguous, imprecise
Cannot effectively establish completeness, consistency

However, can add rigor with standards, templates, etc.

O

UNIVERSITY OF OREGON e CIS 422
BY

Use Cases

Use Case: a story describing how the system and a user interact
to accomplish a user task

A form of User Centered Analysis — capturing requirements from
the user’s point of view
Goal of helping identify user needs
Solve the right problem
Describe the “business logic” of the system

Use cases specify a subset of functional requirements
Only system behavior observable to the user
Does not address non-functional constraints, qualities

Use cases should not specify design or implementation
(including Ul design)

O

UNIVERSITY OF OREGON e CIS 422
BY

Identifying Actors

Actors — identifies the roles different users play with respect
to the system

Roles represent different classes of users (users with different goals)
Actors carry out use cases

Helps identify requirements for different kinds of users
“How would depositors use the system?”
“How would a library patron use the system?”

Diverse classes of users may very different goals and require
different interfaces

E.g., users vs. administrators vs. content providers

O

UNIVERSITY OF OREGON e CIS 422
BY

UML Graphic Example

http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/

ATM System

f .

/“—“
\(ﬁ

—

System
Startup

Operator Systemn
Shutdown
-‘-\—__'_,—ld-
/.;—'—'__‘_‘——-
\\\\ Session
Customer

2

S
«inc

—— T —

\\\\.
(Trmseﬁfm

D
D

D

lude » <

T extend »

— e —
Invalid
PIN

—_—

P

Bank

UNIVERSITY OF OREGON e CIS 422

O

Creating Use Cases

|dentify a key actor and purpose
The purpose informs the use case title and description

|dentify the main flow (ideal path) from the starting point to the

result
Preconditions: anything that must be true to initiate the Use Case

Trigger: event, if any, initiating the Use Case
Basic Flow: sequence of interactions from the trigger event to the result

Alternative Flows: identify sequences branching off the Basic Flow

UNIVERSITY OF OREGON e CIS 422
BY

O

Guidelines for Good Use Cases

Use Cases should express requirements, not design

Focus on import results that provide value to specific actors
* |.e., if nobody really cares about the outcome, it is not a good use case

Focus on what the actor is doing, not the details of how

* Not: “The user left-clicks on the radio button labeled Balance and presses
the Enter button”

* “The user elects the option to view the balance.”
Looking for a small number of use cases that capture the most
important interactions
Read the IBM Use Case paper

UNIVERSITY OF OREGON e CIS 422
BY

O

1 Brief Description

This use case describes how the Bank Customer uses the ATM to withdraw money to his/her
bank account.

2 Actors

2.1 Bank Customer
2.2 Bank

3 Preconditions

There is an active network connection to the Bank.
The ATM has cash available.

4 Basic Flow of Events

[

The use case begins when Bank Customer inserts their Bank Card.

2. Use Case: Validate User is performed.

3. The ATM displays the different alternatives that are available on this unit. [See Supporting
Requirement SR-xxx for list of alternatives]. In this case the Bank Customer always selects
"Withdraw Cash".

4. The ATM prompts for an account. See Supporting Requirement SR-yyy for account types

that shall be supported.

The Bank Customer selects an account.

The ATM prompts for an amount.

The Bank Customer enters an amount.

Card ID, PIN, amount and account is sent to Bank as a transaction. The Bank Consortium

replies with a go/no go reply telling if the transaction is ok.

9. Then money is dispensed.

10. The Bank Card is returned.

11. The receipt is printed.

o0 ~J O\ L

5 Alternative Flows

5.2 Wrong account

If in step 8 of the basic flow the account selected by the Bank Customer is not associated with this bank
card, then

* 1.The ATM shall display the message "Invalid Account — please try again".

2. The use case resumes at step 4. |

Example Use Case

Avoids design decisions
References other use cases

References more precise
definitions where
necessary

Some terms need further
definition (e.g. PIN)

For Wednesday:

Prepare questions that help address your biggest risks and
uncertainties

...but be prepared to improvise if some assumptions are not met

Consider multiple stakeholders/users:
» SafeRide user

» SafeRide driver

e SafeRide dispatcher

e SafeRide management (?)

Sketch use cases from each perspective. They will be wrong, but
that’s ok ... they will help you ask the right questions to discover
what’s wrong and how to make it right.

O

UNIVERSITY OF OREGON e CIS 422
BY

