Software Development
Processes

Designing the development process

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

Plans & Processes

We make a plan for an individual project
But we seldom start from scratch ...

A “process” or “process model” is a pattern for
planning and managing projects

* May follow a pattern used by many organizations, e.q.,
“Extreme programming”, “Rational unified process
(RUP)”, “scrum”, “waterfall”, “spiral model”

IH

O

UNIVERSITY OF OREGON

Styles & Instances

In cooking: North Italian > risotto > risotto ala
Milanese > tonight’s risotto ala Milanese with
chicken and chantarelle

In airplanes: Jet airliner > wide body twin-engine >
Dreamliner 787

In software processes

Waterfall > Waterfall as practiced at XXX corp > This project
Agile > Scrum > EA’s Scrum > Zelda meets Godzilla

Process family > process model > adapted process > project
plan

O

UNIVERSITY OF OREGON

Typical Goals

Intellectual manageability

Predictability
* ability to make a reasonably accurate plan

Visibility
e ability to monitor (“how are we doing?”)

Flexibility, Feedback

e ability to acquire and adjust to new information and
circumstances

Relative priority of these goals will vary by domain and
organization

O

UNIVERSITY OF OREGON

Process Models in Other Fields

Reliable, efficient production
Process improvement for quality, efficiency

Predictable production
Ability to plan, schedule, and budget production

Standardization

Economic advantage of standard processes and
components

Automation

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

The “Waterfall” model

Inspired by industrial product development
cycles, esp. aircraft
A document-based model

Stages in development are marked by completion of
documents

Feedback and feed-forward are through documents

Several variations

UNIVERSITY OF OREGON

O

Waterfall Model (example)

Feasibility
Study \ Each passage from phase to phase
. — is marked by completion of a document
Requirements .- that governs the following phase

Analysis \

Design—

Integration
System Test
Deliver
(from Ghezzi et al, 1991) y—\v

: Maintenance

UNIVERSITY OF OREGON

System Royce’'s Waterfall

Requirements
Model (1970
L So;a}e ()

| Requirements ‘

‘ Preliminary
| Design ‘
L. Analysis
Preliminary ‘
Design

Program
' Design ‘

:

| Testing

-

L. Operation

UNIVERSITY OF OREGON

O

Waterfall Model Phase

Elaboration
Method

Input document Output document

Goal is an output document consistent with the
input document; an “error” is an inconsistency

Phase is complete when document is finished
Each phase has specific methods

O

UNIVERSITY OF OREGON

Characteristics of the Waterfall
Model

Limited iteration

Naive version is purely sequential; more commonly
there is some iteration and adjustment, but the
model is highly sequential

“Big bang” development

Beginning from nothing
Ending with a single delivery of a single product

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

How does waterfall satisfy goals of a
process model?

Intellectual manageability
Predictability

* ability to make a reasonably accurate plan
Visibility
e ability to monitor (“how are we doing?”)

Flexibility, Feedback

e ability to acquire and adjust to new information and
circumstances

UNIVERSITY OF OREGON

O

Spiral Model
(Risk-driven evolutionary development)

A Cumulative cost

Progress
1. Determine objectives —» 2. ldentify and
resolve risks
o Risk analysis ‘
Risk analysis
/ Risk analysis
. | Require- \ \
Review / / ments plan \ \ Operational |
< % / % Prototype 1 | Prototype 2 | Prototype |
Concept of | Concept of Require-
operation | require- ments /" Draft
, ments. / Detailed |
design /
Development | Verification /
plan | & Validation
_— Code
Test plan | Verification e lntegration
) & Validation
Tes
4. Plan the next .
iteration Release | Implementation _
«—— .
3. Development and Test

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

In each “turn” of the spiral

Problem definition
Determine objectives (qualities to achieve)
|dentify alternatives and constraints

Risk analysis

Determine risks
Gain information (typically through prototyping)
| o

Develop & verify next level “product”
may be only requirements, or design

Plan next phase

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

Phased Projects

Develop & Deliver in Increments

May repeat entire waterfall model in each
iIncrement

Goals:
Keep clients/customers happy
Improve requirements through feedback

Improve process visibility through more frequent
milestones

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

Prototypes vs. Incremental
Deliveries

The primary goal of a prototype is information
Should address the most significant risks

Incremental deliveries should be useful
May avoid the highest risks

These goals are in conflict!
It is sometimes possible to serve both purposes

but ... Many “prototypes” fail to serve either purpose,
because developers fail to distinguish goals and plan
accordingly

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

Prototyping for Information

Requirements clarification
Users “learn what they want” by using the prototype
Implicit requirements are identified through failure
Human interface can be assessed and refined

Design alternatives
Performance, complexity, capacity, ...
Requires evaluation plan before implementation

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

“Agile methods”

A reaction to problems with “waterfal
methods: Same goals, different means

XP, Scrum, RAD, ...

Predictability, Visibility: Through incremental

development
e Rapid feedback, continuous adjustment

|II

UNIVERSITY OF OREGON

O

Agile? Huh?

Agile:
marked by ready ability to move with quick easy
grace <an agile dancer>

having a quick resourceful and adaptable character

<an agile mind>
(Merriam-Webster)

As versus: perceived slow, clumsy movement of
conventional software development processes

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

Cycle time, adaptability

Waterfall model: Freeze requirements early,
then be consistent

Boehm: “Plan the flight, fly the plan”

Problem: “Now that | see it, that’s not what |
wanted”

Spiral, iterative: Multiple cycles of requirements,
design, implementation

Agile: Radically shortened, with skipped steps

UNIVERSITY OF OREGON

O

Plan vs Adapt (per Martin Fowler)

Classic engineering is based on planning

Carpenter’s rule: Measure twice, cut once
(a good rule if you’re cutting something physical)

Change (new requirements, unanticipated
difficulties) are a problem. Avoid it if you can.
Agile methods welcome change

Resistance is futile. Don’t try to predict, don’t try to
prevent, just adapt. Take one useful step, then
plan the next.

Assume competence and good will.

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

Code vs Design

Conventional view:
Requirements and design are creative.

Code is a fabrication activity. Train some monkeys
to write it.

Agile view
Code is design. It’s creative and respectable.

We have computers, not trained monkeys, for the
fabrication step

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

Long before XP and Scrum ...

Rapid Application Development (IBM)
No written requirements: Build, demo, repeat
Intense client participation

* “Workshops” for goals and (especially) scope
* Client as collaborator: rapid cycle of choosing next step

Timeboxing
Small, flat teams, using standard frameworks

O

UNIVERSITY OF OREGON

“Agile” process characteristics

Very rapid build/evaluate/design cycle
Days or weeks; not months

Requirements are minimal and informal
Typically “user stories” (scenarios)

Requirements are assumed to be incomplete and
evolving: We don’t know till we see it

Little architectural design; lots of refactoring

Design is also evolving; commit “as late as possible”

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

Documents record decisions
(requirements, design)

Plan carefully, design for change

A document (requirements, design, ...)
marks progress

Work products are reviewed (code
reviews, design reviews, ...)

Estimate schedule for planned features.

Partition responsibility: | own this code,
you own that code.

Replace most documents with meetings
Do something useful now. Refactor

tomorrow. Don’t anticipate or generalize.

Progress is working code doing something
useful. Nothing else counts.

Pair programming.

Select features for schedule.

Joint ownership: Anybody can change
anything.

O

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

Reduced Paper Documentation

Emphasis on rapid delivery and change
Not on preserving information for a longer period

Fixed personnel (including user representatives) reduces
need for documents as orientation and communication

Active, intense user participation

Reliance on computerized documentation
CASE tools, databases and application generators
The test cases are design “documentation”

Developer “logs” of design rationale

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

Practices: Developers are human

Stand-up meetings
Daily scrum: What did you do yesterday, what do you plan to
do today, and is there anything in your way?

Pigs & chickens: Only pigs speak.
Limited overtime

Pair programming

Test first

Timeboxing

Only developers estimate effort

O

UNIVERSITY OF OREGON

Timeboxing

If functionality not delivered by date, scale back
or abandon

Radical application of “design-to-schedule”

The build-plan is stable; the product
functionality is fluid within bounds of project
scope

What is actually built depends on technical feasiblity
as well as user wants

UNIVERSITY OF OREGON

O

Community of Practice

Learn from experience, share experience; not a fixed
process “by the book”

~ Assembla Announcements

6 keys to succeeding with distributed agile developmen
Posted by on Apr 08 17:00

Want to build a lean, mean, code churning machine
find that a distributed team can become agile and

miimnnmntid i Adali;s Al A:Mn'? thlngs.

S b

s

?xﬂ%c Switch Statements Smell B

ctivity is doing less wc
at's why most of the
Switch Statements (AKA "Case Statements") is a canonical CodeSmell (at leasst was about the list ¢

RefactoringIlmprovingTheDesignOfExistingCode. The alleged problem with swi
__statements are scattered throughout a program. If you add or remove a clause in.

U ‘ ava PasanT s oa nsat savaasassay e, e v - v &= = - _—

Agile vs. Just Hacking

It’s easy to just hack and call it “agile”
Agile development is adaptive but disciplined

Each process (XP, Scrum, Crystal) has well-
defined rules and practices

lrony? Lots of strict rules of practice, because we're
humans and need discipline.

Next step is chosen by customer and developer
together

UNIVERSITY OF OREGON

O

Example: Scrum Process

Two cycles:
24 hours, from “daily scrum” meeting to next
2 weeks to 30 days: the “sprint”

Sprint results in delivered functionality
(shippable)
Something from the prioritized feature backlog
Selected for importance, and feasibility

“Burndown” chart is current time-to-completion
estimate

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

Continuous Process Improvement

Retrospectives

After each sprint: what did we do well, what can we
Improve

Note analogy to Toyota processes: just-in-time,
transparent, constant improvement. Agile and
Toyota model are both reactions against
Taylorism.

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

Goals (again)

Intellectual manageability

Predictability
* ability to make a reasonably accurate plan

Visibility
e ability to monitor (“how are we doing?”)

Flexibility, Feedback

e ability to acquire and adjust to new information and
circumstances

Relative priority of these goals will vary by domain and
organization

O

UNIVERSITY OF OREGON

Choosing a model, designhing a

process

What would you choose, and why?

Context: Flight control software for Boeing
Dreamliner

Context: Spore
Context: Amazon Kindle version x

Context: Yahoo new advertising program (compete
with Google AdWords)

UNIVERSITY OF OREGON ¢ CIS 422/522 S 2016

O

