
Principles of DB 2016, Lecture 1-2

1

CS589 Principles of DB Systems
Lecture 1-2: Relational Calculus

David Maier (maier@cs.pdx.edu)

1 CS 589, Principles of Database Systems, © 2016 David Maier

Goals for this lecture

n  Introduce tuple relational calculus queries
(based on Ramakrishnan & Gehrke)

n  Formal definition of tuple relational calculus

n  Introduce domain relational calculus queries
(based on Levene & Loizou)

n  Formal definition of domain relational calculus

CS 589, Principles of Database Systems, © 2016 David Maier 2

Principles of DB 2016, Lecture 1-2

2

Example tuple calculus query
Student(s-id, name, major, f-id, age)

Differences between Ramakrishnan/Gehrke & Levene/Loizou:
1.  Capital letters for tuple variables rather than lower case letters.
2.  Using the relation name (e.g., Student) to represent the

current relation (what is called “r” in the textbook).
3.  Using the notation T.major to refer to one value in a tuple

rather than t(major) as in the textbook.

{ T | T ∈ Student ∧ T.age > 30 ∧ T.major = “CS”}

What does this query find for us?

CS 589, Principles of Database Systems, © 2016 David Maier 3

Relational algebra vs. relational calculus
A relational algebra query is a well-formed expression with

relational algebra operators

Student(s-id, name, major, f-id, age)

(σage<20Student) ∪ (σage>50Student)

A tuple relational calculus query is a set-definition of form
 { T | F(T)}
where T is a tuple variable and F is a logical expression, with T as

the only free variable, that evaluates to true or false.
 { T | T ∈ Student ∧ (T.Age < 20 ∨ T.Age > 50) }

In SQL,
Select * From Student S Where (S.Age < 20 or S.Age > 50)
CS 589, Principles of Database Systems, © 2016 David Maier 4

Principles of DB 2016, Lecture 1-2

3

More examples of tuple calculus queries
Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

{ T | T ∈ Faculty ∧ (T.rank = “Prof” ∨ T.rank = “Assoc Prof”)}

{ T | T ∈ Student ∧ T ∈ Faculty } Not well-formed; why?

{ T | ∃F ∈ Faculty ∃S ∈ Student (F.name = S.name ∧ F.dept =

S.major ∧ T.name = F.name ∧ T.dept = S.major}
What is schema for T?

{ T | ∃F ∈ Faculty ∃S ∈ Student (F.name = S.name ∧ F.dept =
S.major ∧ T.name = S.name ∧ T.dept = F.dept)}
Note: this query and the preceding one are equivalent.

{ T | ∃S ∈ Student ∃F ∈ Faculty (F.f-id = S.f-id ∧ T.faculty-name =

F.name ∧ T.student-name = S.name)}
CS 589, Principles of Database Systems, © 2016 David Maier 5

More tuple calculus examples
Undergrad(id, name, phone)
Grad(id, name, phone)

{ V | V ∈ Undergrad ∧ V ∈ Grad } is what?

{ W | W ∈ Undergrad ∨ W ∈ Grad } is what?

{ T | V ∈ Undergrad ∧ T.name = V.name} is what?

{ T | T.id = V.id } is what?

CS 589, Principles of Database Systems, © 2016 David Maier 6

Principles of DB 2016, Lecture 1-2

4

In-class exercise

Explain each of these relational algebra queries
in English and write each of them in tuple
calculus.

Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

1.  (πname(σage=21Student)) ∪ πnameFaculty)
2.  πs-id,name,f-id(Student ⋈ Faculty)
3.  (πname(σage=21Student)) – (πname(σmajor=“CS”Student))
 CS 589, Principles of Database Systems, © 2016 David Maier 7

More tuple calculus examples
Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

{ T | T ∈ Faculty ∧ ∃S ∈ Student (S.f-id = T.f-id) }
{ T | T ∈ Faculty ∧ ∀S ∈ Student (S.f-id = T.f-id) }

What does each query find for us?

How would you express each in relational algebra?

CS 589, Principles of Database Systems, © 2016 David Maier 8

Principles of DB 2016, Lecture 1-2

5

Definition of tuple-calculus syntax
(Ramakrishnan & Gehrke)
Rel is a relation name, R and S are tuple variables, a is an attribute

of R, b is an attribute of S, op is one of {<, >, =, ≤, ≥, ≠}
An atomic formula is one of the following:

 R ∈ Rel
 R.a op S.b
 R.a op constant (or constant op R.a)

A formula is:
 any atomic formula
 ¬F, (F), F1∧F2, F1∨F2, F1⇒F2 (if F, F1, and F2 are formula)
 ∃R ∈ Rel (F(R)) where F is formula with R a free variable
 ∀R ∈ Rel (F(R)) where F is a formula with R a free variable

A tuple calculus query is an expression of the form:
{ T | F(T) } where T is the only free variable in F

Note: all of the variables are tuple variables.

CS 589, Principles of Database Systems, © 2016 David Maier 9

Bound and free variables
See pages 35-37 in our textbook.

Free variables in a formula are defined as:
1.  All the variables occurring in an atomic formula are

free.
2.  The free variables in F ∧ G are the free variables of

F plus the free variables of G.
3.  The free variables in F ∨ G are the free variables of

F plus the free variables of G.
4.  The free variables in (F) or ¬F are the free variables

of F.
5.  In ∃x F or ∀x F, the free variables are the free

variables of F except for x. We say x is a bound
variable when it appears with ∃ or ∀.

CS 589, Principles of Database Systems, © 2016 David Maier 10

Principles of DB 2016, Lecture 1-2

6

Free and Bound Variable Example

{ T | T ∈ Student ∧
 ∃M ∈ Faculty (T.f-id = M.f-id ∧
 ∀S ∈ Student
 (S.dept ≠ T.dept ∨ S.f-id = M.f-id))}

CS 589, Principles of Database Systems, © 2016 David Maier 11

Definition of tuple calculus syntax
(Ramakrishnan & Gehrke)
Rel is a relation name, R and S are tuple variables, a is an attribute

of R, b is an attribute of S, op is one of {<, >, =, ≤, ≥, ≠}
An atomic formula is one of the following:

 R ∈ Rel
 R.a op S.b
 R.a op constant (or constant op R.a)

A formula is:
 any atomic formula
 ¬F, (F), F1∧F2, F1∨F2, F1⇒F2 (if F, F1, and F2 are formula)
 ∃R ∈ Rel (F(R)) where F is formula with R a free variable
 ∀R ∈ Rel (F(R)) where F is a formula with R a free variable

A tuple calculus query is an expression of the form:
{ T | F(T) } where T is the only free variable in F

Note: all of the variables are tuple variables.

CS 589, Principles of Database Systems, © 2016 David Maier 12

Principles of DB 2016, Lecture 1-2

7

Domain calculus uses domain variables

Domain calculus is very similar to tuple calculus.
We use domain variables rather than tuple

variables.
Tuples can be substituted for tuple variables.
Domain values (like 6 or “Smith”) can be

substituted for domain variables.

CS 589, Principles of Database Systems, © 2016 David Maier 13

Domain Relational Calculus Expression

{x1:A1, x2:A2, … , xn:An | F(x1, x2, …, xn) }

x1, x2, …, xn
domain variables

F(x1, x1, …, xn)
an expression in

logic where x1, x1, …, xn
are (the only) free variables

distinct attributes names
(in the query answer)

A1, A2, …, An

CS 589, Principles of Database Systems, © 2016 David Maier 14

Principles of DB 2016, Lecture 1-2

8

Example domain calculus queries
Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

1.  { x : s-id, y : name, w : f-id z : major |

Student(x, y, z, w, 21) }

2.  { x : name, y : fname | ∃i:s-id ∃m:major ∃f:f-id ∃a:age ∃r:rank
∃d:dept (Student(i, x, m, f, a) ∧ Faculty (f, y, r, d)) }

3.  { x : name | ∃i:s-id ∃m:major ∃f:f-id ∃a:age ∃r:rank ∃d:dept
(Student(i, x, m, f, a) ∧ Faculty (f, x, r, d)) }

CS 589, Principles of Database Systems, © 2016 David Maier 15

Exercise
Write each of the following queries in domain calculus.

Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

1.  (πname(σage=21Student)) ∪ πnameFaculty)
2.  πs-id,name,f-id(Student ⋈ Faculty)
3.  (πname(σage=21Student)) – (πname(σmajor=“CS”Student))

CS 589, Principles of Database Systems, © 2016 David Maier 16

Principles of DB 2016, Lecture 1-2

9

Answers for a
Domain Relational Calculus Expression

{x1:A1, x2:A2, … , xn:An | F(x1, x2, …, xn) }

The query answer for a database d = {r1, r2, …, rm}

over the database schema R = {R1, R2, …, Rm} is a
relation r over relation schema R with schema(R) =
{A1, A2, …, An} such that a tuple <v1, v2, …, vn> ∈ r
iff

1.  for all i ∈ {1, 2, …, n}, vi ∈ DOM(Ai) and
2.  if for all i ∈ {1, 2, …, n}, we substitute vi for xi in F,

then <v1, v2, …, vn> satisfies F with respect to the
database d.

CS 589, Principles of Database Systems, © 2016 David Maier 17

Details
n  In our textbook, a domain calculus query is followed

by the symbol “d” which is the database over which
the query is being evaluated. Sometimes the query
is followed by a set of relations, e.g., ({s, r})

n  The definition of formulas and bound and free
variables is essentially the same for domain calculus
(as described in our textbook) and tuple calculus (as
described in Ramakrishnan & Gehrke). I expect you
to be able to read and understand this material.

CS 589, Principles of Database Systems, © 2016 David Maier 18

Principles of DB 2016, Lecture 1-2

10

Satisfaction of a formula by a tuple
Let d = {r1, r2, …, rm} be a database over the database schema R

= {R1, R2, …, Rm}. Given a query
{x1:A1, x2:A2, … , xn:An | F(x1, x2, …, xn) }

a tuple <v1, v2, …, vn> satisfies the formula F with respect to
d, if for all i ∈ {1, 2, …, n}, vi ∈ DOM(Ai) and one of the
following is satisfied:

1.  If F is the atomic formula R(y1, y2, …, yk) then R ∈ R and the
tuple t with vi substituted for each variable yi satisfies t ∈ r
where r is the relation over R in d.

2.  If F is the atomic formula xi = yj, then vi = vj is true where vi
is substituted for xi and either yj is a variable and vj is
substituted for it or yj is a constant and vj = yj.

3.  If F is the formula (G), then <v1, v2, …, vn> satisfies the
formula F if <v1, v2, …, vn> satisfies the formula G.

CS 589, Principles of Database Systems, © 2016 David Maier 19

Satisfaction (cont.)
4.  If F has the form ¬F, F1^F2, F1vF2, or F1 ⇒ F2, then <v1, v2,

…, vn> satisifes F according to the logical connectors.

5.  If F is the formula ∃xi:A (G(x1, x2, …, xi, …, xn), then <v1, v2,
…, vi-1, vi+1, …vn> satisifes F if there exists a constant vi ∈
DOM(A) such than when vi is substituted for xi, <v1, v2, …, vi-1,
vi, vi+1, … vn> satisfies G.

6.  If F is the formula ∀xi:A (G(x1, x2, …, xi, …, xn), then <v1, v2,
…, vi-1, vi+1, …vn> satisifes F if for all constants vi ∈ DOM(A),
when vi is subsituted for xi, <v1, v2, …, vn> satisifes G.

CS 589, Principles of Database Systems, © 2016 David Maier 20

Principles of DB 2016, Lecture 1-2

11

Redo: Satisfaction of a formula by a tuple
Let d = {r1, r2, …, rm} be a database over the database schema R

= {R1, R2, …, Rm}. Given a query
{x1:A1, x2:A2, … , xn:An | F(x1, x2, …, xn) }

a tuple v = <v1, v2, …, vn> satisfies the formula F with respect
to d, if for all i ∈ {1, 2, …, n}, vi ∈ DOM(Ai) and one of the
following is satisfied:

1.  If F is the atomic formula Rj(xi1, xi2, …, xik) then
<vi1, vi2, …, vik> ∈ rj.

2.  i. If F is the atomic formula xi = xj, then vi = vj
ii. If F is the atomic formula xi = a, then vi = a.

3.  If F is the formula (G), then v satisfies the formula F if
v satisfies the formula G.

CS 589, Principles of Database Systems, © 2016 David Maier 21

Redo: Satisfaction (cont.)
4.  If F has the form ¬F, F1∧F2, F1∨F2, or F1 ⇒ F2, then v satisifes

F according to the logical connectors.
For example, v satisfies F1∨F2 if v satisfies F1 or v satisfies F2.

5.  If F is ∃x:A (G(x1, x2, …, xn, x), then <v1, v2, …, vn> satisifes F
if there exists a constant c ∈ DOM(A)
<v1, v2, …, vn, c> satisfies G.

6.  If F is ∀x:A (G(x1, x2, …, xn, x), then <v1, v2, …, vn> satisifes F
if for every constant c ∈ DOM(A)
<v1, v2, …, vn, c> satisfies G.

CS 589, Principles of Database Systems, © 2016 David Maier 22

