
DB Principles 2016: Lecture 1-1

1

CS589 Principles of DB Systems
Lecture 1-1: Relational Model and
Relational Algebra

David Maier (maier@cs.pdx.edu)

1

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Administrivia
Class web page: piazza.com/pdx/spring2016/cs589/home

 Detailed class schedule
 Topics
 Reading assignments
 Quizzes
 Exam dates

 Lecture slides (.pdf)
 posted before class begins
 ink versions posted after lecture

Class text:
Levene and Loizou, A Guided Tour of Relational Databases and

Beyond, Springer-Verlag, 1999.

Class discussion and questions will be on the Piazza page
I will post scores on quizzes and assignments on D2L

2

DB Principles 2016: Lecture 1-1

2

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Planned Activities
 Two exams [48%]

 Dates per posted class schedule
 In class, work by yourself, open book
 Each over half of the class material

 Quizzes (8) [14%]
 In class, work by yourself, closed book
 One quiz every Tuesday, with some exceptions
 Lowest quiz score will be dropped

 Homework Assignments (4) [36%]
 May work with a partner, turn in 1 paper
 Due on Thursdays

 Participation [2%]
 Class worksheets
 Activity on Piazza

3

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Learning objectives

1. Be familiar with the results and techniques
presented here and be able to apply them
in your own work.

2. Be able to read and study other DB results
that have been formalized.

3. Be able to analyze and evaluate one or
more particular formulations.

4. Be able to formalize aspects of your own
research.

5. Understand the benefits and limitations that
derive from formalizing aspects of DB work.

4

DB Principles 2016: Lecture 1-1

3

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Unit 1: Relational Query Languages

 Relational model (per L & L)
 Relational algebra
 Relational calculus

 Tuple calculus
 Domain calculus

 Introduction to Datalog
 Will return to Datalog in Unit 4

 Equivalence of languages

5

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Relational Model & Relational Algebra

We assume you are familiar with the relational
model and with relational algebra in some
form.

 Introduce the definition of the relational
model used in the text

 Introduce the definition of the relational
algebra used in the text

Have a look at §§1.9.1 – 1.9.3 to see authors’
notation for sets, orders, logic.

6

DB Principles 2016: Lecture 1-1

4

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Relation schema
Relation schema – a relation symbol R with an

associated similarity type, type(R). type(R) is a
natural number that tells us the number of
attributes in the relation schema

Discussion questions:
1. What aspects of a relational schema are missing?
2. Based on this definition of schema, how would you

define union-compatibility?
3. Would type(R) = 0 make sense?

7

CS 589 Principles of Database Systems, Spring 2016 © David Maier

A relation schema with attribute names
For each relation schema, there is a 1-to-1 mapping called att

from {1, 2, 3, …, type(R)} to U, where U is the universal set of
names (to be used as names in this database).

Example: Relation symbol is Student with similarity type of 4

define the mapping att for this relation schema
att (1) = id
att (2) = last-name
att (3) = first-name
att (4) = major

Define schema(R) = {att(1), att(2), … , att(type(R))}

Example: schema(Student) = {id, last-name, first-name, major}

8

DB Principles 2016: Lecture 1-1

5

CS 589 Principles of Database Systems, Spring 2016 © David Maier

A relation schema with attribute names
Attributes are ordered and named in this model.
Also assume each attribute A has an associated domain

of values: DOM(A)
Discussion questions:
1. Is it possible for two attributes in one relation

schema to have the same name?
2. Can a relation schema have an infinite number of

attributes?
3. Can DOM(A) = DOM(B)?

9

CS 589 Principles of Database Systems, Spring 2016 © David Maier

A database schema

A database schema is a finite set
R = {R1, R2, …, Rn}
such that each Ri  R is a relation schema.

The schema of R (the entire database) is
defined as:
schema (R) = i  I schema (Ri),

where I = {1, 2, …, n}

10

DB Principles 2016: Lecture 1-1

6

CS 589 Principles of Database Systems, Spring 2016 © David Maier

First Normal Form assumption

 A relation schema is in First Normal Form (1NF) if all
the domains of all attributes in schema(R) are atomic

 A database schema is in 1NF if all its relation schemas
are in 1NF

 Examples of attributes not in 1NF:
 Set- or list-valued attribute
 Attribute values that are complex objects
 Attribute values that are relations: Nested Relations

11

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Universal relation schema assumption
Notice – this is an assumption (not a definition).

A database schema R satisfies the universal
relational schema assumption if each attribute in
database schema R plays a unique role in R.

That is, all occurrences of an attribute in the
database schema are assumed to have the same
meaning.
student(id, last_name, first_name, major)

course(id, dept, number, credits)

12

DB Principles 2016: Lecture 1-1

7

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Universal relation schema assumption and
union-compatibility
Two relation schemas, R and S, are union-compatible if they are

identical (i.e., if their corresponding schemas have the same
attribute set).

Discussion questions:
1. How does this definition of union-compatibility (the one from

the book) compare to an alternative definition of union
compatibility: Two relation schemas have the same number of
attributes and corresponding attributes have the same domain

2. Does the definition of union-compatibility in the book prevent
us from taking the union of two relations that satisfy the
above, alternative definition of union-compatibility?

13

CS 589 Principles of Database Systems, Spring 2016 © David Maier

And now for the data in a database

A tuple over a relation scheme R, with
schema (R) = {A1, A2, …, Am} where
att(i) = Ai, for i = 1, 2, …, m
is a member of the Cartesian product

DOM(A1)  DOM(A2)  …  DOM(Am)

A relation over R is a finite set of tuples over R.

14

DB Principles 2016: Lecture 1-1

8

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Alternative definition of a tuple
A tuple t of relation scheme R over schema(R) is a total mapping

from schema(R) to the union of the domains of the attributes of
R such that Ai  schema(R), t(Ai)  DOM(Ai)

Example: Student(id, last-name, first-name, major)

using the first definition of tuple, an example is the sequence:
<111, Doe, John, CS>

using the second, alternative definition of tuple, t is a function:
t(id) = 111, t(last-name) = Doe, t(first-name) = John,
t(major) = CS.

What’s the difference in these definitions?

15

CS 589 Principles of Database Systems, Spring 2016 © David Maier

A database (the data …)

A database over R = {R1, R2, …, Rn} is a set
d = {r1, r2, …, rn}
such that each ri is a relation over Ri  R

Discussion questions:
1. Is is possible for a relation to be empty in a

database?
2. Is it possible for two relations in a database

to have exactly the same set of tuples?

16

DB Principles 2016: Lecture 1-1

9

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Projection of a tuple onto one attribute

Projection of a tuple t in a relation r over
schema R onto the attribute Ai in schema(R)
is the i-th coordinate of t.

If a tuple t is defined as an element of the cross product of the
domains, then t(i) is selecting the i-th component of this
element of a cross product.

If a tuple t is defined as a mapping, then getting the value of
attribute Ai is equal to applying the mapping to Ai: t(Ai).

In different contexts, we might use positional
[t(4)] or mapping [t(major)] notation.

17

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Projection onto a set of attributes
We extend the notion of projection to a set of attributes,

Y = {att(i1), att(i2), …, att(ik)}  schema (R)
with i1 < i2 < … < ik, as follows:

t[Y] = <t(i1), t(i2), …, t(ik)>

Notes: Y is a set of attribute names.
Projection is defined for one tuple; the result of projection is one

tuple.
t(4) or t(major) is selecting a value; t[major] is projecting the tuple

t to produce a new tuple with one attribute.

t = <111, John, Doe, CS>
t[{last_name, first_name}] = <John, Doe>

18

DB Principles 2016: Lecture 1-1

10

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Relational Algebra

 The relational algebra is a set of operators
 Some unary, some binary

 Each operator takes in relation(s) and
produces a relation

 A relational query is the composition of a set
of operators

 Some binary operators require union-
compatibility, some do not.

19

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Relational algebra: , , 
Union, intersection, and difference require that the two

input relations are union-compatible.
Union: r1  r2 = {t | t  r1 or t  r2}

Intersection: r1  r2 = {t | t  r1 and t  r2}

Difference: r1 − r2 = {t | t  r1 and t  r2)}

Note: each operator is defined by the set of tuples it
produces (based on tuples in the input relations).

20

DB Principles 2016: Lecture 1-1

11

CS 589 Principles of Database Systems, Spring 2016 © David Maier

A quick example

 R is
 r1 is

 r2 is

 What is r1 – r2?
 What is r1  r2?

Iris Malet St. Computing
Reuven Harold Rd. Math
Hanna Harold Rd. Linguistics
Brian Alexandra Rd. Sociology

Iris Malet St. Computing
Reuven Harold Rd. Math
Anne Harold Rd. Linguistics
Brian Alexandra Rd. Sociology

Name Address Dept.

21

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Relational algebra: projection

Projection:
Y(r) = {t[Y] | t  r}

Discussion question:
How does the cardinality of the relation Y(r)

relate to the cardinality of relation r?

22

DB Principles 2016: Lecture 1-1

12

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Relational Algebra: Selection
Suppose we have one tuple in our hand. How do we translate that

into something that is true or false, to drive a conditional
selection process?

Logical implication: Let r be a relation over relation schema R, t a
tuple in r, F, F1, and F2 are selection formulae, then t logically
implies (╞) F is defined as:

t ╞ A=a, if the expression t(A)=a evaluates to true
t ╞ A=B, if the expression t(A)=t(B) evaluates to true
t ╞ F1F2, if t ╞ F1 and t ╞ F2

t ╞ F1F2, if t ╞ F1 or t ╞ F2

t ╞ F, if t does not ╞ F
t ╞ (F), if t ╞ F

t(id)=150  (t(major)=CS)
23

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Relational algebra: selection, natural join
Selection:
F(r) = { t | t  r and t ╞ F }

Natural join:
r1 ⋈ r2 = { t | t1  r1 and t2  r2 such that

t[schema(R1)] = t1 and
t[schema(R2)] = t2}

Where schema(R) = schema(R1)  schema(R2)

Discussion questions:
1. Which attributes are we joining on?
2. What happens if there are no attributes to join on?

24

DB Principles 2016: Lecture 1-1

13

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Discussion Questions

 What are the equivalent relational algebra
operations for

 F1F2(r)
 F1F2(r)
 F(r)

25

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Natural join example

r1 ⋈ r2 = { t | t1  r1 and t2  r2 such that
t[schema(R1)] = t1 and
t[schema(R2)] = t2}

Where schema(R) = schema(R1)  schema(R2)

Student S-Id Name F-Id

1 John 101

2 Maria 101

3 Wei 102

Faculty F-Id F-Name Rank

101 Dave Prof

102 Tim Prof

103 Niru Assoc
Prof

1 John 101 Dave Prof

1 John 101 101 Dave Prof

One of the tuples in the answer: t

based on these two existing tuples:
t1 t2

The natural
join is ALL
such tuples
that can be
constructed.

26

DB Principles 2016: Lecture 1-1

14

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Renaming
Let r be a relation over relation schema R, A be an attribute

of schema(R) and B an attribute in U which is not in
schema(R).

Renaming, ρ, of A to B in r, is a relation over
schema(S) = (schema(R) – {A})  {B}, defined by:

ρAB(r) = { t | u  r such that
t[schema(S) – {B}] = u[schema(R) – {A}]
and
t[B] = u[A]}

Can anyone say this in simple English?

27

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Division
Let r be a relation over relation schema R, with

schema(R) = XY, and s be a relation over relation
schema S, with schema(S) = Y.

The division of r by s is a relation over relation
schema R1 where schema(R1) = X
is defined as:

r ÷ s = { t[X] | t  r and s  Y(F(r)) where
X = {A1, A2, …, Aq} and
F is the formula A1=t[A1]  …  Aq=t[Aq]}

28

DB Principles 2016: Lecture 1-1

15

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Division
 What does the division operator have to do with

universal quantification?
 What is r  s for these relations?

TOPIC
databases
software-engineering
distributed-computing

Lecturer TOPIC
Jack databases
Jack software-engineering
Jack distributed-computing
Jeffrey databases
Jeffrey distributed-computing
Jeffrey automata theory
Udai expert-systems
Udai software-engineering
Jin databases
Jin software-engineering
Jin distributed-computing
Jin algorithms

s: r:

29

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Relational algebra queries
A relational algebra expression (i.e., query) is a well-

formed expression consisting of a finite number of
relational algebra operators (, , −, , , ⋈, , )
whose operands are relation schemas which can be
treated as input variables to the query.

An answer to a relational algebra query is obtained by
replacing every occurrence of Ri in the query by a
relation over Ri and computing the results by
invoking the relational algebra operators in the
query.

A query language is relationally complete if it is at least
as expressive as the relational algebra.

30

DB Principles 2016: Lecture 1-1

16

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Aggregate Functions
 Need answers for “summary” queries

 How many?
 Overall average?
 Maximum, minimum
 Sum

 Other relational algebra compositions cannot answer
these, because we lack computations that iterate
over tuples

 Aggregate: a function over an attribute, which given
a finite set of tuples returns a natural number
 Book is in error here…may not be a natural number
 Common aggregates: COUNT, MIN, MAX, SUM, AVG

31

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Aggregate Functions
FA

X(r) means the result of applying F to attribute A,
partitioned into distinct groups by X

If X = , we apply F over the entire relation

NAME DEPT SALARY DAY
Abdu Computing 2000 Monday
Abdu Computing 2000 Tuesday
Abdu Computing 2000 Thursday
Hanna Computing 1400 Wednesday
Hanna Computing 1400 Friday
Richard Computing 1000 Friday
Martine Maths 1600 Tuesday
Martine Philosophy 1600 Friday
Reuven Maths 1500 Wednesday
Reuven Maths 1500 Thursday
Dan Linguistics 1000 Tuesday
Ruth Linguistics 1100 Monday

What is the answer to:

COUNT(NAME(r))

COUNTDEPT(NAME,DEPT(r))

SUMSALARY
DEPT(NAME,DEPT,SALARY(r))

32

DB Principles 2016: Lecture 1-1

17

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Relational Completeness

 The set of queries expressible in relational
algebra is widely considered the minimal set
of queries for any reasonable relational query
language

 A query language is said to be relationally
complete if it is at least as expressive as the
relational algebra

33

CS 589 Principles of Database Systems, Spring 2016 © David Maier

Operator Sets

Some operators are redundant
r  s =
also, division

There are other equivalent sets
 for ⋈

Some things not expressible: transitive closure

34

