
CS 589 Spring 2016: Lecture 1-3

1

CS589 Principles of DB Systems
Spring 2016
Lecture 1-3: Introduction to Datalog

David Maier

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 2

Goals for this lecture

 Introduce you to Datalog queries

 Briefly introduce the various versions of
Datalog

 Explain how Datalog queries are interpreted
We will consider efficient interpretation later

CS 589 Spring 2016: Lecture 1-3

2

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 3

Datalog – a query language based on
definite Horn logic clauses

 Datalog is a query language
Related to domain calculus

 A Datalog program consists of one or more
clauses (also called rules)

 Datalog syntax is the same as Prolog but
without functions and without the extralogical
features such as Cut and Fail.

 The order of clauses does not matter in
Datalog; the order of literals in the body of a
rule does not matter.

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 4

Example Datalog Query
Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

Query 1:
Result (x, y) :- Student(s,x,m,f,a), Faculty(f,y,r,d).

An equivalent query in domain calculus:
{x, y | s(m(f(a(r(d(

Student(s,x,m,f,a)  Faculty(f,y,r,d)))))))}
An equivalent query in relational algebra:
s-name,f-name(Student ⋈ Faculty)

Literals separated
by commas are
“ANDed” together

join

Choosing variables for answer (project)

“if”

CS 589 Spring 2016: Lecture 1-3

3

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 5

Example Datalog Query 2
Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

Query 2:
Result (x,y) :- Student(x,y,”CS”,f,a).

An equivalent query in domain calculus:
{x, y | f(a(Student(x,y,”CS”,f,a))) }

An equivalent query in relational algebra:
s-id, sname(major=“CS”(Student))

Choosing variables for answer (project)
Constant of “CS”
selects students
with major = “CS”

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 6

Exercise
Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

Query 3:
Answer(x) :- Student(a,x,b,c,21),Faculty(c,d,e,”CS”).

Write an equivalent query in domain or tuple calculus:

Write an equivalent query in relational algebra:

CS 589 Spring 2016: Lecture 1-3

4

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 7

Comparing domain calculus & Datalog
Student(s-id, s-name, major, f-id, age)

{ a, b, c | x(y(Student(a,b,c,x,y))) }
This expression defines a set (query answer). The tuple <a,b,c> is in

this set provided there exists an x and a y where the tuple
<a,b,c,x,y> is in relation student (with relation schema Student).

Result(a,b,c) :- Student(a,b,c,x,y).
This is a definite Horn clause that says

“Result(a,b,c) is true if Student(a,b,c,x,y) is true.”
In a Horn clause, every variable is universally quantified.

This clause is the same as:
(a)(b)(c)(x)(y)(Student(a,b,c,x,y) → Result(a,b,c))
So … are these expressions defining the same query?

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 8

Implication (quick reminder)

p q p^q
true true true

true false false

false true false

false false false

p q p→
q

true true true

true false false

false true true

false false true

Any logical connector can be defined using a truth table.
Here we show the truth table for ^ (and) and for → (implication).

(a)(b)(c)(x)(y)(Student(a,b,c,x,y) → Result(a,b,c))
If ever the left part is true, then the right part must be true.

Result (a,b,c) :- Student(a,b,c,x,y).
If the body (the right hand side) is true, then the head (left hand side)
must be true.
Evaluation of Datalog actively looks for tuples that satisfy the body.

CS 589 Spring 2016: Lecture 1-3

5

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 9

Datalog Example – for Union
Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

Result(x,y) :- Student(x,y,a,b,c).
Result(x,y) :- Faculty(x,y,d,e).

This is a Datalog program consisting of two rules. They
both produce Result tuples.

This query is equivalent to the following:

s-id, name(Student)  f-id, name(Faculty)

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 10

Exercise
Grad-course (c-num, title, credits)
Undergrad-course (c-num, title, credits)

Write a Datalog query that is equivalent to:
(Grad-course)  (Undergrad-course)

CS 589 Spring 2016: Lecture 1-3

6

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 11

Datalog with negation
Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

No-advisees(x,y) :- Faculty(x,y,a,b),Student(c,d,e,x,f).

Find the f-id and name for any faculty tuple for which
there does not exist a Student tuple advised by this
faculty member.

What is an equivalent relational algebra query?

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 12

Exercise

Write each of these queries in Datalog.

Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

1. (name(age=21Student))  nameFaculty)
2. Student ⋈ Faculty
3. (name(age=21Student)) – (name(major=“CS”Student))

CS 589 Spring 2016: Lecture 1-3

7

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 13

Datalog Facts

 An empty body is interpreted as true. So
Student(126,”Hector Ng”, “CS”, 146, 23) :- .
means
true → Student(126,”Hector Ng”, “CS”, 146, 23)
that is, Student is true for these values

 Abbreviated to
Student(126,”Hector Ng”, “CS”, 146, 23).
Called a fact (or ground fact, if no variables)

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 14

Datalog Program

 A Datalog program is a collection of rules
(some could be facts)

 Will usually have a special relation name
(e.g., Result, Answer) we are interested in
Result(d) :- Course(“CS”,n,”Winter”),

Prereq(d,m,”CS”,n),
Course(d,m,”Fall”).

Course(“CS”,311,”Winter”).
Course(“CS”,312,”Spring”).
Course(“Math”,119,”Fall”).
Prereq(“Math”,119,”CS”,311).
Prereq(“CS”,311,”CS”,312).

CS 589 Spring 2016: Lecture 1-3

8

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 15

Database Perspective

Can think of ground facts as stored database.
Extensional DB

Can think of rules as view over stored data (and
other views)
Intensional DB

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 16

Interpreting a Datalog Program

Treat a rule as representing all its ground
instances
substitute a value for each variable symbol
Result(“Math”) :- Course(“CS”,311,”Winter”),

Prereq(“Math”,119,”CS”,311),
Course(“Math”,119,”Fall”).

Result(“CS”) :- Course(“CS”,312,”Winter”),
Prereq(“CS”,311,”CS”,312),
Course(“CS”,311,”Fall”).

Result(“Acorn”) :- Course(“CS”,96557,”Winter”),
Prereq(“Acorn”,2,”CS”,96557),
Course(“Acorn”,2,”Fall”).

Generally restrict to a safe substitution: Only values in program

CS 589 Spring 2016: Lecture 1-3

9

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 17

Derived Database

Start with a Datalog program P
 Start with Der = all ground facts from P
 Add any tuple to Der that is the head of a

ground instance of a rule in P where all
predicates in the body are already in Der.

Will return to Datalog later to talk about
efficient ways to compute the derived
database of a program.

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 18

Datalog syntax
Atomic formulas:

R(y1, y2, …, yk) – a predicate formula
x = y (Note: this is syntatic sugar for equal(x,y).)
R(v1, v2, …, vk) – a ground atomic formula, where vi are values

Literal:
an atomic formula (positive literal) or
the negation of an atomic formula (negative literal): A

Clause (Datalog rule):
L :- L1, L2, …, Ln.
where L is a predicate formula and Li, i = 1, …, n, is a literal.
(Some versions of Datalog require all literals to be positive
literals.) The comma means “and”.

CS 589 Spring 2016: Lecture 1-3

10

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 19

Datalog with recursion
(more about this in a future lecture)
Parent-child(p-id, ch-id)

Ancestor(x,y) :- Parent-child(x, y).
Ancestor(x,z) :- Ancestor(x,y), Parent-child(y,z).

How does this Datalog program get evaluated?
Keep building the derived database until no new
tuples get added to Ancestor.
The book describes the meaning of a program using
the “immediate consequence” of a program.

Note each Datalog rule is independent. The variable
names in separate rules have no connection.

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 20

Expressive power of Datalog languages
(compared to relational algebra)

 Datalog – one rule, no negation, no recursion.

 Datalog – multiple rules, no negation, no
recursion.

 Datalog – multiple rules, no negation, with
recursion.

 Datalog – multiple rules, with negation, no
recursion.

 Datalog – multiple rules, with negation, with
recursion.

Conjunctive queries SPJ

SPJU

SPJU+ recursion but NOT relationally complete

SPJU- relationally complete but no recursion

Relationally complete plus recursion,
but some queries are ambiguous!

