CS 589 Spring 2016: Lecture 1-3

I

CS589 Principles of DB Systems
Spring 2016
Lecture 1-3: Introduction to Datalog

David Maier

Goals for this lecture

= Introduce you to Datalog queries

= Briefly introduce the various versions of
Datalog

= Explain how Datalog queries are interpreted
We will consider efficient interpretation later

CS 589 Princ. of DB Systems, Spring 2016 © David Maier

CS 589 Spring 2016: Lecture 1-3

Datalog — a query language based on
definite Horn logic clauses

= Datalog is a query language
Related to domain calculus

= A Datalog program consists of one or more
clauses (also called rules)

= Datalog syntax is the same as Prolog but
without functions and without the extralogical
features such as Cut and Falil.

= The order of clauses does not matter in
Datalog; the order of literals in the body of a
rule does not matter.

CS 589 Princ. of DB Systems, Spring 2016 © David Maier

Example Datalog Query

+

Student(s-id, s-name, major, f-id, age) .
Literals separated
Faculty(f-id, f-name, rank, dept) by commas are

@ VLM Cﬁ(&hoosing variables for answer ANDed" together

Query 1:
Result (X, () Student(s,x, OFacuIt y,r,d).

“if” join
An equivalen u aimcaleulus:
{x,y | 3s(@m %(Hg?? n; ki
Student(s,x,m,f,a) A Faculty(f,y,r,d)))))))}

An equivalent query in relational algebra:
7ts-name,f-name(StUdGr‘t >4 Faculty)

CS 589 Princ. of DB Systems, Spring 2016 © David Maier

CS 589 Spring 2016: Lecture 1-3

Example Datalog Query 2

+

Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

. . . Constant of “CS”
Choosing variables for answer (project) onstant o

selects students
Query 2- with major = “CS”
Result (x,y) :- Student(X, ,f,a).

An equivalent query in domain calculus:
{x, y | If(3a(Student(x,y,”CS",f,a))) }

An equivalent query in relational algebra:
Ts-id, sname(Gmajorz“CS”(Student))

CS 589 Princ. of DB Systems, Spring 2016 © David Maier

Exercise

Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

Query 3:
Answer(x) :- Student(a,x,b,c,21),Faculty(c,d,e,”CS”).
Write an equivalent query in domain or tuple calculus:

Write an equivalent query in relational algebra:

CS 589 Princ. of DB Systems, Spring 2016 © David Maier

CS 589 Spring 2016: Lecture 1-3

Comparing domain calculus & Datalog

Student(s-id, s-name, major, f-id, age)

{ a, b, ¢ | Ix(Fy(Student(a,b,c,x,y))) }

This expression defines a set (query answer). The tuple <a,b,c>is in
this set provided there exists an x and a y where the tuple
<a,b,c,x,y> is in relation student (with relation schema Student).

Result(a,b,c) :- Student(a,b,c,x,y).

This is a definite Horn clause that says
“Result(a,b,c) is true if Student(a,b,c,x,y) is true.”
In a Horn clause, every variable is universally quantified.

This clause is the same as:
(va)(Vb)(vc)(vx)(Vy)(Student(a,b,c,x,y) — Result(a,b,c))
So ... are thesé-expre:s‘éions defining the same query?

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 7

Implication (quick reminder)

Any logical connector can be defined using a truth table.
Here we show the truth table for ~ (and) and for — (implication).

P |9 [pP7g P |g9 |[p— > —_
true |true |true q
true | true | true

true |false | false

false | true | false true | false | false

false | false | false false | true | true

false | false | true
(Va)(vb)(Vc)(Vx)(Vy)(Student(a,b,c,x,y) > Resutttete)
If ever the left part is true, then the right part must be true.

Result (a,b,c) :- Student(a,b,c,x,y).

If the body (the right hand side) is true, then the head (left hand side)
must be true.

Evaluation of Datalog actively looks for tuples that satisfy the body.

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 8

CS 589 Spring 2016: Lecture 1-3

Datalog Example — for Union

+

Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

Result(x,y) :- Student(x,y,a,b,c).
Result(x,y) :- Faculty(x,y,d,e).

This is a Datalog program consisting of two rules. They
both produce Result tuples.

This query is equivalent to the following:

Ts.id, name(StUdeNt) U meiy name(Faculty)

CS 589 Princ. of DB Systems, Spring 2016 © David Maier

Exercise

Grad-course (c-num, title, credits)
Undergrad-course (c-num, title, credits)

Write a Datalog query that is equivalent to:
(Grad-course) n (Undergrad-course)

P (€, T, R i Grad-gonre (CT Y,

Undoryal _cavrn (€T, R)

rAno v @p0
A AU

CS 589 Princ. of DB Systems, Spring 2016 © David Maier

10

CS 589 Spring 2016: Lecture 1-3

Datalog with negation

+

Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

No-advisees(x,y) :- Faculty(x,y,a,b),—Student(c,d,e,x,f).

Find the f-id and name for any faculty tuple for which
there does not exist a Student tuple advised by this
faculty member.

What is an equivalent relational algebra query?

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 11

Exercise

Write each of these queries in Datalog.

Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

L (nname(cage:mStUdent)) U nnameFaCUIty)
2. oStudent > Faculty a

3. (nname(cage:218tudent))— (Thame(Cmajor=+cs>Student))

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 12

CS 589 Spring 2016: Lecture 1-3

Datalog Facts

= An empty body is interpreted as true. So
Student(126,”Hector Ng”, “CS”, 146, 23) :- .
means
true — Student(126,”Hector Ng”, “CS”, 146, 23)
that is, Student is true for these values

= Abbreviated to
Student(126,”Hector Ng”, “CS”, 146, 23).
Called a 7act (or ground fact, if no variables)

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 13

i Datalog Program

= A Datalog program is a collection of rules
(some could be facts)

= Will usually have a special relation name

(e.g., Result, Answer) we are interested in

Result(d) :- Course(“CS”,n,”Winter”),
Prereq(d,m,”CS”,n),
Course(d,m,”Fall”).

Course(“CS”,311,"Winter”).
Course(“CS”,312,”Spring”).
Course(“Math”,119,”Fall”).
Prereq(“Math”,119,”CS”,311).
Prereq(“CS”,311,”CS",312).

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 14

CS 589 Spring 2016: Lecture 1-3

Database Perspective

Can think of ground facts as stored database.
Extensional DB

Can think of rules as view over stored data (and
other views)

Intensional DB

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 15

Interpreting a Datalog Program

Treat a rule as representing all its ground
instances

substitute a value for each variable symbol

Result(“Math”) :- Course(“CS”,311,"Winter”),
Prereq(“Math”,119,”CS”,311),
Course(“Math”,119,”Fall™).

Result(“CS™) :- Course(“CS”,312,”Winter”),
Prereq(“CS”,311,”CS”,312),
Course(“CS”,311,”Fall”).

Result(“Acorn”) :- Course(“CS”,96557,”Winter”),
Prereq(“Acorn”,2,”CS”,96557),
Course(“Acorn”,2,”Fall”).

Generally restrict to a safe substitution: Only values in program

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 16

CS 589 Spring 2016: Lecture 1-3

Derived Database

Start with a Datalog program P
= Start with Der = all ground facts from P

= Add any tuple to Der that is the head of a

ground instance of a rule in P where all
predicates in the body are already in Der.

Will return to Datalog later to talk about
efficient ways to compute the derived
database of a program.

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 17

Datalog syntax

Atomic formulas:

R(Y1, ¥, ---» Yi) — @ predicate formula

x =y (Note: this is syntatic sugar for equal(x,y).)

R(vy, Vy, ..., Vi) — a ground atomic formula, where v, are values
Literal:

an atomic formula (positive literal) or

the negation of an atomic formula (negative literal): —A
Clause (Datalog rule):

L:-L, Ly, oy Ly

where L is a predicate formula and L, i = 1, ..., n, is a literal.
(Some versions of Datalog require all literals to be positive
literals.) The comma means “and”.

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 18

CS 589 Spring 2016: Lecture 1-3

Datalog with recursion
(more about this in a future lecture)

+

Parent-child(p-id, ch-id)

Ancestor(x,y) :- Parent-child(x, y).
Ancestor(x,z) :- Ancestor(Xx,y), Parent-child(y,z).

How does this Datalog program get evaluated?
Keep building the derived database until no new
tuples get added to Ancestor.
The book describes the meaning of a program using
the “immediate consequence” of a program.

Note each Datalog rule is independent. The variable
names in separate rules have no connection.

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 19

Expressive power of Datalog languages
(compared to relational algebra)

= Datalog — one rule, no negation, no recursion.
Conjunctive queries SPJ

= Datalog — multiple rules, no negation, no
recursion. spiu

= Datalog — multiple rules, no negation, with
recursion. SPJU+ recursion but NOT relationally complete

= Datalog — multiple rules, with negation, no
recursion. SPJU- relationally complete but no recursion

= Datalog — multiple rules, with negation, with

recursion. Relationally complete plus recursion,
but some queries are ambiguous!

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 20

10

