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CS589 Principles of DB Systems
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Lecture 1-3: Introduction to Datalog
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Goals for this lecture

 Introduce you to Datalog queries

 Briefly introduce the various versions of 
Datalog

 Explain how Datalog queries are interpreted
We will consider efficient interpretation later
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Datalog – a query language based on 
definite Horn logic clauses

 Datalog is a query language
Related to domain calculus

 A Datalog program consists of one or more 
clauses (also called rules)

 Datalog syntax is the same as Prolog but 
without functions and without the extralogical 
features such as Cut and Fail.  

 The order of clauses does not matter in 
Datalog; the order of literals in the body of a 
rule does not matter.  
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Example Datalog Query
Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

Query 1:
Result (x, y) :- Student(s,x,m,f,a), Faculty(f,y,r,d).

An equivalent query in domain calculus:
{x, y | s(m(f(a(r(d(

Student(s,x,m,f,a)  Faculty(f,y,r,d)))))))}
An equivalent query in relational algebra:
s-name,f-name(Student ⋈ Faculty)

Literals separated
by commas are
“ANDed” together 

join

Choosing variables for answer (project)

“if”
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Example Datalog Query 2
Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

Query 2:
Result (x,y) :- Student(x,y,”CS”,f,a).

An equivalent query in domain calculus:
{x, y | f(a(Student(x,y,”CS”,f,a))) }

An equivalent query in relational algebra:
s-id, sname(major=“CS”(Student))

Choosing variables for answer (project)
Constant of “CS”
selects students
with major = “CS”
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Exercise
Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

Query 3:
Answer(x) :- Student(a,x,b,c,21),Faculty(c,d,e,”CS”).

Write an equivalent query in domain or tuple calculus:

Write an equivalent query in relational algebra:
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Comparing domain calculus & Datalog
Student(s-id, s-name, major, f-id, age)

{ a, b, c | x(y(Student(a,b,c,x,y))) }
This expression defines a set (query answer).  The tuple <a,b,c> is in 

this set provided there exists an x and a y where the tuple 
<a,b,c,x,y> is in relation student (with relation schema Student).

Result(a,b,c) :- Student(a,b,c,x,y).
This is a definite Horn clause that says 

“Result(a,b,c) is true if Student(a,b,c,x,y) is true.”
In a Horn clause, every variable is universally quantified.  

This clause is the same as:
(a)(b)(c)(x)(y)(Student(a,b,c,x,y) → Result(a,b,c))
So … are these expressions defining the same query?
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Implication (quick reminder)

p q p^q
true true true

true false false

false true false

false false false

p q p→
q

true true true

true false false

false true true

false false true

Any logical connector can be defined using a truth table.
Here we show the truth table for ^ (and) and for → (implication).

(a)(b)(c)(x)(y)(Student(a,b,c,x,y) → Result(a,b,c) )
If ever the left part is true, then the right part must be true.

Result (a,b,c) :- Student(a,b,c,x,y).
If the body (the right hand side) is true, then the head (left hand side)
must be true.
Evaluation of Datalog actively looks for tuples that satisfy the body.
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Datalog Example – for Union
Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

Result(x,y) :- Student(x,y,a,b,c).
Result(x,y) :- Faculty(x,y,d,e).

This is a Datalog program consisting of two rules.  They 
both produce Result tuples.  

This query is equivalent to the following:

s-id, name(Student)  f-id, name(Faculty)
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Exercise
Grad-course (c-num, title, credits)
Undergrad-course (c-num, title, credits)

Write a Datalog query that is equivalent to:
(Grad-course)  (Undergrad-course)
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Datalog with negation
Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

No-advisees(x,y) :- Faculty(x,y,a,b),Student(c,d,e,x,f).

Find the f-id and name for any faculty tuple for which 
there does not exist a Student tuple advised by this 
faculty member.

What is an equivalent relational algebra query?
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Exercise

Write each of these queries in Datalog. 

Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

1. (name(age=21Student))  nameFaculty)
2. Student ⋈ Faculty
3. (name(age=21Student)) – (name(major=“CS”Student))
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Datalog Facts

 An empty body is interpreted as true. So
Student(126,”Hector Ng”, “CS”, 146, 23) :- .
means
true → Student(126,”Hector Ng”, “CS”, 146, 23)
that is, Student is true for these values

 Abbreviated to
Student(126,”Hector Ng”, “CS”, 146, 23).
Called a fact (or ground fact, if no variables)
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Datalog Program

 A Datalog program is a collection of rules 
(some could be facts)

 Will usually have a special relation name 
(e.g., Result, Answer) we are interested in
Result(d) :- Course(“CS”,n,”Winter”),

Prereq(d,m,”CS”,n),
Course(d,m,”Fall”).

Course(“CS”,311,”Winter”).
Course(“CS”,312,”Spring”).
Course(“Math”,119,”Fall”).
Prereq(“Math”,119,”CS”,311).
Prereq(“CS”,311,”CS”,312).
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Database Perspective

Can think of ground facts as stored database.
Extensional DB

Can think of rules as view over stored data (and 
other views)
Intensional DB
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Interpreting a Datalog Program

Treat a rule as representing all its ground 
instances
substitute a value for each variable symbol
Result(“Math”) :- Course(“CS”,311,”Winter”),

Prereq(“Math”,119,”CS”,311),
Course(“Math”,119,”Fall”).

Result(“CS”) :- Course(“CS”,312,”Winter”),
Prereq(“CS”,311,”CS”,312),
Course(“CS”,311,”Fall”).

Result(“Acorn”) :- Course(“CS”,96557,”Winter”),
Prereq(“Acorn”,2,”CS”,96557),
Course(“Acorn”,2,”Fall”).

Generally restrict to a safe substitution: Only values in program
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Derived Database

Start with a Datalog program P
 Start with Der = all ground facts from P
 Add any tuple to Der that is the head of a 

ground instance of a rule in P where all 
predicates in the body are already in Der.

Will return to Datalog later to talk about 
efficient ways to compute the derived 
database of a program.
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Datalog syntax
Atomic formulas:

R(y1, y2, …, yk) – a predicate formula
x = y   (Note: this is syntatic sugar for equal(x,y).)
R(v1, v2, …, vk) – a ground atomic formula, where vi are values

Literal:
an atomic formula (positive literal) or 
the negation of an atomic formula (negative literal): A

Clause (Datalog rule):
L :- L1, L2, …, Ln.
where L is a predicate formula and Li, i = 1, …, n, is a literal.  
(Some versions of Datalog require all literals to be positive 
literals.)  The comma means “and”.
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Datalog with recursion 
(more about this in a future lecture)
Parent-child(p-id, ch-id)

Ancestor(x,y) :- Parent-child(x, y).
Ancestor(x,z) :- Ancestor(x,y), Parent-child(y,z).

How does this Datalog program get evaluated?
Keep building the derived database until no new 
tuples get added to Ancestor.
The book describes the meaning of a program using 
the “immediate consequence” of a program.

Note each Datalog rule is independent.  The variable 
names in separate rules have no connection.
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Expressive power of Datalog languages
(compared to relational algebra)

 Datalog – one rule, no negation, no recursion.

 Datalog – multiple rules, no negation, no 
recursion.

 Datalog – multiple rules, no negation, with 
recursion. 

 Datalog – multiple rules, with negation, no 
recursion. 

 Datalog – multiple rules, with negation, with 
recursion. 

Conjunctive queries SPJ

SPJU

SPJU+ recursion but NOT relationally complete

SPJU- relationally complete but no recursion

Relationally complete plus recursion, 
but some queries are ambiguous!


