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CS589 Principles of DB Systems
Spring 2016
Lecture 1-3: Introduction to Datalog

David Maier

Goals for this lecture

= Introduce you to Datalog queries

= Briefly introduce the various versions of
Datalog

= Explain how Datalog queries are interpreted
We will consider efficient interpretation later
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Datalog — a query language based on
definite Horn logic clauses

= Datalog is a query language
Related to domain calculus

= A Datalog program consists of one or more
clauses (also called rules)

= Datalog syntax is the same as Prolog but
without functions and without the extralogical
features such as Cut and Falil.

= The order of clauses does not matter in
Datalog; the order of literals in the body of a
rule does not matter.
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Example Datalog Query

+

Student(s-id, s-name, major, f-id, age) .
Literals separated
Faculty(f-id, f-name, rank, dept) by commas are

@ VLM Cﬁ(&hoosing variables for answer ANDed" together

Query 1:
Result (X, () Student(s,x, OFacuIt y,r,d).

“if” join
An equivalen u aimcaleulus:
{x,y | 3s(@m %( Hg?? n; ki
Student(s,x,m,f,a) A Faculty(f,y,r,d)))))))}

An equivalent query in relational algebra:
7ts-name,f-name(StUdGr‘t >4 Faculty)
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Example Datalog Query 2

+

Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

. . . Constant of “CS”
Choosing variables for answer (project) onstant o

selects students
Query 2- with major = “CS”
Result (x,y) :- Student(X, ,f,a).

An equivalent query in domain calculus:
{x, y | If(3a(Student(x,y,”CS",f,a))) }

An equivalent query in relational algebra:
Ts-id, sname(Gmajorz“CS”(Student))
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Exercise

Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

Query 3:
Answer(x) :- Student(a,x,b,c,21),Faculty(c,d,e,”CS”).
Write an equivalent query in domain or tuple calculus:

Write an equivalent query in relational algebra:
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Comparing domain calculus & Datalog

Student(s-id, s-name, major, f-id, age)

{ a, b, ¢ | Ix(Fy(Student(a,b,c,x,y))) }

This expression defines a set (query answer). The tuple <a,b,c>is in
this set provided there exists an x and a y where the tuple
<a,b,c,x,y> is in relation student (with relation schema Student).

Result(a,b,c) :- Student(a,b,c,x,y).

This is a definite Horn clause that says
“Result(a,b,c) is true if Student(a,b,c,x,y) is true.”
In a Horn clause, every variable is universally quantified.

This clause is the same as:
(va)(Vb)(vc)(vx)(Vy)(Student(a,b,c,x,y) — Result(a,b,c))
So ... are thesé-expre:s‘éions defining the same query?
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Implication (quick reminder)

Any logical connector can be defined using a truth table.
Here we show the truth table for ~ (and) and for — (implication).

P |9 [pP7g P |g9 |[p— > —_
true |true |true q
true | true | true

true |false | false

false | true | false true | false | false

false | false | false false | true | true

false | false | true
(Va)(vb)(Vc)(Vx)(Vy)(Student(a,b,c,x,y) > Resutttete)
If ever the left part is true, then the right part must be true.

Result (a,b,c) :- Student(a,b,c,x,y).

If the body (the right hand side) is true, then the head (left hand side)
must be true.

Evaluation of Datalog actively looks for tuples that satisfy the body.
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Datalog Example — for Union

+

Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

Result(x,y) :- Student(x,y,a,b,c).
Result(x,y) :- Faculty(x,y,d,e).

This is a Datalog program consisting of two rules. They
both produce Result tuples.

This query is equivalent to the following:

Ts.id, name(StUdeNt) U meiy name(Faculty)
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Exercise

Grad-course (c-num, title, credits)
Undergrad-course (c-num, title, credits)

Write a Datalog query that is equivalent to:
(Grad-course) n (Undergrad-course)

P (€, T, R i Grad-gonre (CT Y,

Undoryal _cavrn (€T, R)

rAno v @p0
A AU
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Datalog with negation

+

Student(s-id, name, major, f-id, age)
Faculty(f-id, name, rank, dept)

No-advisees(x,y) :- Faculty(x,y,a,b),—Student(c,d,e,x,f).

Find the f-id and name for any faculty tuple for which
there does not exist a Student tuple advised by this
faculty member.

What is an equivalent relational algebra query?
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Exercise

Write each of these queries in Datalog.

Student(s-id, s-name, major, f-id, age)
Faculty(f-id, f-name, rank, dept)

L (nname(cage:mStUdent)) U nnameFaCUIty)
2. oStudent > Faculty a

3. (nname(cage:218tudent))— (Thame(Cmajor=+cs>Student))
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Datalog Facts

= An empty body is interpreted as true. So
Student(126,”Hector Ng”, “CS”, 146, 23) :- .
means
true — Student(126,”Hector Ng”, “CS”, 146, 23)
that is, Student is true for these values

= Abbreviated to
Student(126,”Hector Ng”, “CS”, 146, 23).
Called a 7act (or ground fact, if no variables)
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i Datalog Program

= A Datalog program is a collection of rules
(some could be facts)

= Will usually have a special relation name

(e.g., Result, Answer) we are interested in

Result(d) :- Course(“CS”,n,”Winter”),
Prereq(d,m,”CS”,n),
Course(d,m,”Fall”).

Course(“CS”,311,"Winter”).
Course(“CS”,312,”Spring”).
Course(“Math”,119,”Fall”).
Prereq(“Math”,119,”CS”,311).
Prereq(“CS”,311,”CS",312).
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Database Perspective

Can think of ground facts as stored database.
Extensional DB

Can think of rules as view over stored data (and
other views)

Intensional DB
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Interpreting a Datalog Program

Treat a rule as representing all its ground
instances

substitute a value for each variable symbol

Result(“Math”) :- Course(“CS”,311,"Winter”),
Prereq(“Math”,119,”CS”,311),
Course(“Math”,119,”Fall™).

Result(“CS™) :- Course(“CS”,312,”Winter”),
Prereq(“CS”,311,”CS”,312),
Course(“CS”,311,”Fall”).

Result(“Acorn”) :- Course(“CS”,96557,”Winter”),
Prereq(“Acorn”,2,”CS”,96557),
Course(“Acorn”,2,”Fall”).

Generally restrict to a safe substitution: Only values in program
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Derived Database

Start with a Datalog program P
= Start with Der = all ground facts from P

= Add any tuple to Der that is the head of a

ground instance of a rule in P where all
predicates in the body are already in Der.

Will return to Datalog later to talk about
efficient ways to compute the derived
database of a program.
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Datalog syntax

Atomic formulas:

R(Y1, ¥, ---» Yi) — @ predicate formula

x =y (Note: this is syntatic sugar for equal(x,y).)

R(vy, Vy, ..., Vi) — a ground atomic formula, where v, are values
Literal:

an atomic formula (positive literal) or

the negation of an atomic formula (negative literal): —A
Clause (Datalog rule):

L:-L, Ly, oy Ly

where L is a predicate formula and L, i = 1, ..., n, is a literal.
(Some versions of Datalog require all literals to be positive
literals.) The comma means “and”.
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Datalog with recursion
(more about this in a future lecture)

+

Parent-child(p-id, ch-id)

Ancestor(x,y) :- Parent-child(x, y).
Ancestor(x,z) :- Ancestor(Xx,y), Parent-child(y,z).

How does this Datalog program get evaluated?
Keep building the derived database until no new
tuples get added to Ancestor.
The book describes the meaning of a program using
the “immediate consequence” of a program.

Note each Datalog rule is independent. The variable
names in separate rules have no connection.

CS 589 Princ. of DB Systems, Spring 2016 © David Maier 19

Expressive power of Datalog languages
(compared to relational algebra)

= Datalog — one rule, no negation, no recursion.
Conjunctive queries SPJ

= Datalog — multiple rules, no negation, no
recursion. spiu

= Datalog — multiple rules, no negation, with
recursion. SPJU+ recursion but NOT relationally complete

= Datalog — multiple rules, with negation, no
recursion. SPJU- relationally complete but no recursion

= Datalog — multiple rules, with negation, with

recursion. Relationally complete plus recursion,
but some queries are ambiguous!
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