Lecture 2-1
Spring 2016
Dependencies and Inference

Principles of Database Systems

Model Theoretic View of Databases

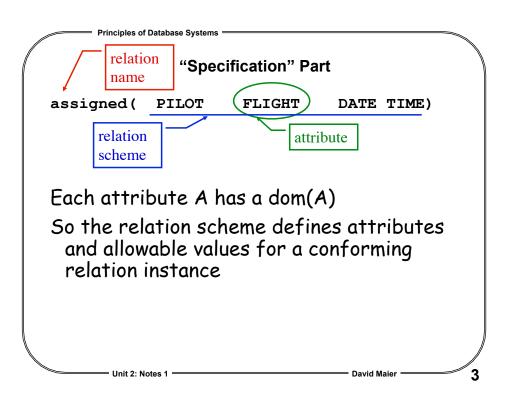
A database schema is a theory or specification

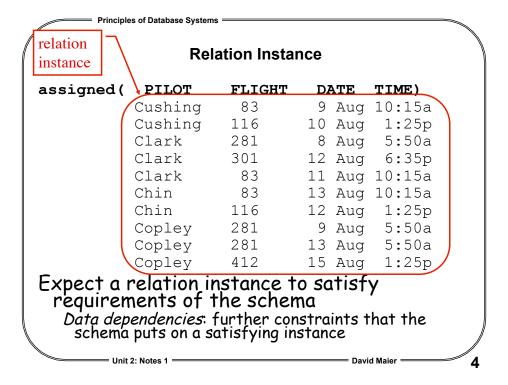
The database state is a model or instance that satisfies the specification

- · When is this view useful?
 - · discussing constraints and implication
 - comparing representation capabilities of two database schemata
 - representing incomplete information: DB as partial model

= Unit 2: Notes 1 — David Maier — David Maier

1





© 2002, 2004, 2006, 2008, 2011, 2014, 2016 David Maier & Lois Delcambre

Functional Dependency

Principles of Database Systems

assigned(PILOT	FLIGHT	DATE	TIME)
	Cushing	83	9 Aug	10:15a
	Clark	83	11 Aug	10:15a
	Chin	83	13 Aug	10:15a
	Cushing	116	10 Aug	1:25p
	Chin	116	12 Aug	1:25p
	Clark	281	8 Aug	5:50a
	Copley	281	9 Aug	5:50a
	Copley	281	13 Aug	5:50a
	Clark	301	12 Aug	6:35p
	Copley	412	15 Aug	1:25p

A generalization of keys: when tuples agree on certain attributes, must agree on others

```
FLIGHT \rightarrow TIME (L \rightarrow T)

PILOT DATE TIME \rightarrow FLIGHT (PDT \rightarrow L)

FLIGHT DATE \rightarrow PILOT (LD \rightarrow P)
```

= Unit 2: Notes 1 — David Maier —

Principles of Database Systems

Functional Dependency Definition

A relation instance r(R) satisfies the functional dependency (FD) $X \rightarrow Y$ (X and Y subsets of R), if

```
for every two tuples t,s in r, if t[X] = s[X], then t[Y] = s[Y]
```

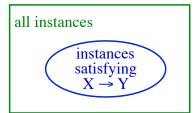
= Unit 2: Notes 1 — David Maier — David Maier

Principles of Database Systems

FDs as Specification

Usually, we don't ask which FDs a relation instance satisfies.

Rather, specify FDs that we expect all instances of to satisfy as part of the relation schema



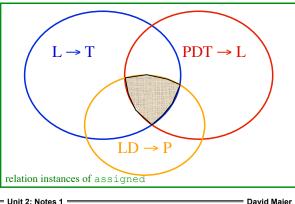
Unit 2: Notes 1

Principles of Database Systems

Sets of FDs

A relation instance r satisfies a set of FDs F if it satisfies every FD in F

$$F = \{L \rightarrow T, PDT \rightarrow L, LD \rightarrow P\}$$



David Maier

Delcambre

Principles of Database Systems

Implication

If an instance r satisfies FDs F, there may be another FD $X \rightarrow Y$ it necessarily satisfies

Say that F implies $X \rightarrow Y$ (F $\models X \rightarrow Y$)

Consider L → T
Let r be any relation instance
 satisfying it
take t,s in r where t[PL] = s[PL]
so t[L] = s[L]
by L → T, t[T] = s[T]
thus r also satisfies PL → T

= Unit 2: Notes 1

David Maier

~ 9

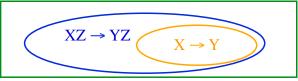
Principles of Database Systems

Inference Axioms

General patterns that describe implications. For X, Y, Z, W sets of attributes

F1. Reflexivity: $X \rightarrow X$

F2. Augmentation: if $X \rightarrow Y$, then $XZ \rightarrow YZ$



F3. Additivity: if $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

= Unit 2: Notes 1

David Maier

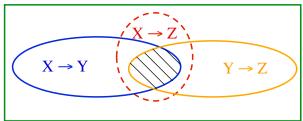
10

Principles of Database Systems =

More Axioms

F4. Projectivity: if $X \rightarrow YZ$, then $X \rightarrow Y$

F5. Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$



F6. Pseudotransitivity: if $X \rightarrow Y$ and $YZ \rightarrow W$, then $XZ \rightarrow W$

= Unit 2: Notes 1

David Mai

11

= Principles of Database Systems

Can Do Proofs

$$F = \{L \rightarrow T, PDT \rightarrow L, LD \rightarrow P\}$$

- 1. L \rightarrow T (in F)
- 2. LD \rightarrow TD (augmentation from 1.)
- 3. LD \rightarrow P (in F)
- 4. LD \rightarrow PTD (additivity from 2. and 3.)

= Unit 2: Notes 1

= David Maier

12

Principles of Database Systems

Derivation

Say that F derives $X \rightarrow Y$ if there is a proof of $X \rightarrow Y$ from FDs in F using inference axioms F1 - F6.

$$F \mid X \rightarrow Y$$

Is implies the same as derives?

$$F \models X \rightarrow Y \text{ if and only if } F \mid X \rightarrow Y$$

= Unit 2: Notes 1

David Maie

13

Principles of Database Systems

Soundness

Prove that each inference axiom is correct. That is, it holds for any relation instance.

F5. If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Take any tuples t,s in r, where r satisfies $X \rightarrow Y$ and $Y \rightarrow Z$.

Suppose t[X] = s[X]. Then from $X \rightarrow Y$, must have t[Y] = s[Y].

But by Y \rightarrow Z, then have t[Z] = s[Z].

So r satisfies $X \rightarrow Z$.

= Unit 2: Notes 1 — David Maier — David Maier

7

© 2002, 2004, 2006, 2008, 2011, 2014, 2016 David Maier & Lois Delcambre

Principles of Database Systems

Definitions

Closure of F, F⁺, is F plus all FDs that can be derived from F by F1. - F6. So F $\mid X \rightarrow Y$ means $X \rightarrow Y$ in F⁺

Closure of X, X^+ , is largest Z such that $X \to Z$ is in F^+

 $\{L \rightarrow T, PDT \rightarrow L, LD \rightarrow P\}$ What is $(LD)^+$? What is T^+ ?

= Unit 2: Notes 1

David Maier

15

Principles of Database Systems

Completeness

If it's true, you can prove it or, equivalently
If you can't prove it, it's not true.

= Unit 2: Notes 1 — David Maier — David Maier

© 2002, 2004, 2006, 2008, 2011, 2014, 2016 David Maier & Lois Delcambre

16

Principles of Database Systems

Instance to show not true

Take any $X \rightarrow Y$ over R not in F⁺. Consider X^+ and let $X^- = R - X^+$.

$$X^+$$
 atts X^- atts
t a1 a2 ... an b1 b2 ... bm
s a1 a2 ... an c1 c2 ... cn
bi \neq ci

This relation instance violates $X \rightarrow Y$.

t[X] = s[X], but claim $t[Y] \neq s[Y]$ Suppose t[Y] = s[Y]. Then $Y \subseteq X^+$ Since $X \to X^+$ in F^+ , so is $X \to Y$ by projectivity, a contradiction

Unit 2: Notes 1 David Maier 17

Principles of Database Systems

The instance satisfies F⁺

Take any $W \rightarrow Z$ in F^+

Case 1. W $\not\subset$ X⁺.

Then $t[W] \neq s[W]$, no problem

Case 2. $W \subseteq X^+$.

Then t[W] = s[W]

Have $X \to X^+$ in F^+ , $X^+ \to W$ by reflexivity and projectivity, and $W \to Z$ in F^+ .

That gives $X \rightarrow Z$ by transitivity applied twice

Additivity on $X \to X^+$ and $X \to Z$ gives $X \to X^+Z$

= Unit 2: Notes 1 — David Maier — David Maier

© 2002, 2004, 2006, 2008, 2011, 2014, 2016 David Maier & Lois Delcambre

Principles of Database Systems

Case 2, continued

We have proved $X \to X^+Z$ is in F^+ But wait! X^+ is supposed to be the maximum set of attributes that X determines. Must be that $Z \subseteq X^+$.

So t[Z] = s[Z]

Thus our instance satisfies $W \rightarrow Z$.

Unit 2: Notes 1 — David Maier — 19

Principles of Database Systems

Armstrong Relation for F

An "exact model" for F:

- Satisfies F⁺
- Violates every FD not in F (F-)

Use the 2-tuple instances in the last proof, combined into one big instance

Example R = ABC, F = $\{A \rightarrow B, B \rightarrow C\}$

Only need FDs in F- with one attribute on right side

10

Principles of Database Systems

= Unit 2: Notes 1

Join Dependency

Note the redundancy in the assigned table: repeat time for each flight.

Can split up

•	•					
asgn1(PILOT	FLT	DZ	ATE)	asgn2 (FLT	TIME)
	Cushing	83	9	Aug	83	10:15a
	Clark	83	11	Aug	116	1:25p
	Chin	83	13	Au	281	5:50a
	Cushing	116	10	Aug	301	6:35p
	Chin	116	12	Aug	412	1:25p
	Clark	281	8	Aug		
	Copley	281	9	Aug		
	Copley	281	13	Aug		
	Clark	301	12	Aug		
	Copley	412	15	Aug		

11

© 2002, 2004, 2006, 2008, 2011, 2014, 2016 David Maier & Lois Delcambre

David Maier

Principles of Database Systems

Can Recover with a Join

assigned = asgn1 ⋈ asgn2
assigned satisfies a join dependency
(JD)

 $\bowtie[PLD, LT]$

assigned = π_{PLD} (assigned) \bowtie π_{LT} (assigned)

A "lossless" join

= Unit 2: Notes 1 — David Maier

Principles of Database Systems

What about \bowtie [PL, PDT]?

asgn3(PILOT FLT) asgn4(PILOT DATE TIME)

Cushing 83 Cushing 9 Aug 10:15a Cushing 116 Cushing 10 Aug 1:25p

. . .

asgn3⋈asgn4(PILOT FLT DATE TIME)

Cushing 83 9 Aug 10:15a Cushing 83 10 Aug 1:25p

. . .

= Unit 2: Notes 1 — David Maier =

24

23

12

Principles of Database Systems

Join Dependency, General Form

r(R), with R1, R2, ..., Rn subsets of R r satisfies ⋈[R1, R2, ..., Rn] if $r = \pi_{R1}(r) \bowtie \pi_{R2}(r) \bowtie ... \bowtie \pi_{Rn}(r)$

notice that always have $r \subseteq \pi_{p_1}(r) \bowtie \pi_{p_2}(r) \bowtie ... \bowtie \pi_{p_n}(r)$

A multi-valued dependency (MVD) is a special case where n = 2.

25

Principles of Database Systems

Implications of FDs and JDs

There are some axioms

 $X \rightarrow Y$ on R, Z = R - XYFJ1. $X \rightarrow Y$ implies $\bowtie [XY, XZ]$ Example $L \rightarrow T$, so $\bowtie[LT, LPD]$

However, there is no finite, complete set of axioms for just FDs and JDs (or JDs alone).

> = Unit 2: Notes 1 David Maier 26

Principles of Database Systems

Are We Stuck?

No

- There are complete axiom sets for FDs and multi-valued dependencies.
- There are complete axiom sets for classes of constraints that include FDs and JDs.
- There is an inference procedure for FD and JD implication.
 not based on axioms

Unit 2: Notes 1 — David Maier — 27

Principles of Database Systems

Need to Use Tableaux

A tableau is a "template" for a relation
Has rows of variables instead of tuples of values

U (<u>P</u>		L	D	<u>T</u>)
V	p1	f1	d1	m1
₩	n2	£1	d2	m2

Treat tableau rows like tuples w(L) = f1

= Unit 2: Notes 1 — David Maier — 28

14

Principles of Database Systems

Valuation

A valuation ρ for tableau U maps its variables to domain values. $\rho(v)$ must be in dom(A) if v in A column

29

Principles of Database Systems

Extend Valuation to Rows and Tableaux

$$\rho(w)$$
 = apply ρ to each variable in w $\rho(w)$ (A) = $\rho(w(A))$

$$\rho$$
 (p1 f1 d1 m1) =

$$\rho(\mathsf{U}) = \{\rho(\mathsf{w}) \mid \mathsf{w} \text{ in } \mathsf{U}\}$$

$$ho$$
 (U) (P L D T) ho (v) Chin 86 1June 4p ho (w) Chao 86 2June 4p

30 = Unit 2: Notes 1 = David Maier =

Principles of Database Systems

How About This Valuation?

$$\rho$$
 (p1)=Chin ρ (f1)=86 ρ (d1)=1 June ρ (m1)=4p ρ (p2)=Chao ρ (d2)=2 June ρ (m2)=5p

= Unit 2: Notes 1 = David Maier =

Principles of Database Systems

Want to Enforce $L \rightarrow T$

Need to make sure that $\rho(m1) = \rho(m2)$. Can we "fix" the tableau?

Have "applied" $L \rightarrow T$ to tableau U.

= Unit 2: Notes 1 — David Maier — David Maier

© 2002, 2004, 2006, 2008, 2011, 2014, 2016 David Maier & Lois Delcambre

32

Principles of Database Systems

The Chase

Apply FDs and JDs to a tableau, to reason about an example relation (or sub-relation)

Tableau rule for FD $X \rightarrow Y$

For rows v and w

If v[X] = w[X], make v[Y] = w[Y] by equating variables in Y

[Book gives rules for replacing variables]

FD chase of tableau U for F: Apply FD rules for FDs in F to U until no change. (Why must this terminate?)

= Unit 2: Notes 1 — David Maier — 33

Principles of Database Systems

Example

$$\{AB \rightarrow E, AG \rightarrow C, BE \rightarrow D, E \rightarrow G, DG \rightarrow H\}$$

Apply $E \rightarrow G$

= Unit 2: Notes 1 — David Maier — 34

17

Principles of Database Systems

Apply
$$AG \to C$$

A B C D E G H

a1 a2 a3 a4 a5 a6 a7

a1 b2 a3 b4 a5 a6 b7

Unit 2: Notes 1 — David Maier — 35

Principles of Database Systems

Testing FD Implication with the Chase

Method in book is ambiguous

Want to test $F \models X \rightarrow Y$ on scheme $R = A1 \ A2 \dots An$

1. Set up a tableau U_X with rows v, w:

v(Ai) = ai w(Ai) = ai if Ai in X = bi otherwise

- 2. Chase U_X with FDs in F
- 3. If v[Y] = w[Y], then $F \models X \rightarrow Y$ (if not, we have a counterexample)

= Unit 2: Notes 1 — David Maier — 36

Principles of Database Systems

Example

$$F = \{AB \rightarrow C, B \rightarrow D, CD \rightarrow E, CE \rightarrow GH, G \rightarrow A\} \models BG \rightarrow C?$$

A B C D E G H

a1 a2 a3 a4 a5 a6 a7

Unit 2: Notes 1 — David Maier — David Maier

= Principles of Database Systems

You Try It

$$F = \{AB \rightarrow E, AG \rightarrow C, BE \rightarrow D, E \rightarrow G, DG \rightarrow H\}$$

Does
$$F \models BE \rightarrow A$$
?
Does $F \models BE \rightarrow H$? (can use same chase)

Unit 2: Notes 1 David Maier David Maier

© 2002, 2004, 2006, 2008, 2011, 2014, 2016 David Maier & Lois Delcambre