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CS589 Principles of DB Systems
Spring 2016
Lecture 1-5: Query Language Equivalence

CS 589 Princ of DB Systems, Winter 2011 © Lois Delcambre, David Maier 2

Goal for this lecture

 Demonstrate how we can prove that one 
query language is more expressive than 
(what the book calls “contained in”) another.
 Introduce the way the proofs use mathematical 

induction
 Walk through some of the proofs from the book
 Summarize the results of QL equivalence

 Note: Need comparisons in Datalog
Res(S) :- Student(S,N,M,F,A), A>18.
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Equivalence of relational query languages
Two queries are equivalent if they return the same 

answer for any possible DB state.
One QL2 is more expressive than QL1 if we can prove 

that every query expressible in QL1 can be expressed 
in QL2.  QL1 and QL2 are equivalent if you can prove 
“more expressive” or “contained in” in both 
directions. 

The following four query languages are equivalent.  
 Relational algebra
 Safe, non-recursive datalog programs with negation
 Allowed domain calculus (and allowed tuple calculus)
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How do we prove it?

Complete the circle
1. Prove relational algebra is contained in 

safe, non-recursive Datalog with negation
2. Prove safe, non-recursive Datalog with negation 

is contained in allowable domain calculus
3. Prove allowable domain calculus is contained in 

relational algebra

Then we will know that all three languages are 
equivalent.
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1. Prove relational algebra is contained in 
safe, non-recursive Datalog
We need to take an arbitrary relational algebra query 

and show how to construct an equivalent safe, non-
recursive Datalog program.

How shall we frame the proof?  How do we take an 
arbitrary relational algebra query expression?

By induction on the number of operators that appear in 
the query expression.  

We need: 
a (minimal) list of the operators in relational algebra.
a base case.  
the inductive hypotheses.
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1. Prove relational algebra is contained in 
safe, non-recursive Datalog (continued)

Minimal set of operators (with the full 
expressive power of the relational algebra): 
, – , , ⋈, 
(Can restrict select to single conditions, and handle 
complex conditions with union, intersect, diff.) 

Base case for the induction:
a relational algebra expression with zero operators.
that is, a query of the form: R

What is the equivalent Datalog program?
A(x1, x2, …, xn) :- R(x1, x2, …, xn).
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The induction step
 Assume the theorem is true for all algebra 

expressions with q or fewer operators.  Then 
consider an algebra expression with q+1 operators.  

 What can that (q+1)st operator be?
One of the operators in our minimal set. 
So proceed by cases
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Union case

The query expression Q is Q1  Q2

Q1 and Q2 must each have q or fewer operators
 Let P1 be a safe program for Q1 that gives answers 

via A1(x1, x2, …, xn) 
 Let P2 be a safe program for Q2 that gives answers 

via A2(x1, x2, …, xn) 
Create a Datalog program P for Q from P1, P2 

and the two additional rules
A(x1, x2, …, xn) :- A1(x1, x2, …, xn).
A(x1, x2, …, xn) :- A2(x1, x2, …, xn).
How do we know P is safe?
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Detail

We need to assume that head symbols in P1
and P2 are disjoint
For example, P2 doesn’t use A1
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Difference case

If query Q is Q1 ̶ Q2, with P1 and P2 as before,
then the equivalent safe, non-recursive 
Datalog program is P = P1 + P2 +

A(x1, x2, …, xn) :- A1(x1, x2, …, xn), A2(x1, x2, …, xn).

Is this safe?
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Discuss the Remaining Cases
PROJECT:

NATURAL JOIN:

SELECT:
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Prove safe, non-recursive Datalog is
contained in allowable domain calculus

 Book starts from program P and a goal
: - R(y1, y2, …, yk).

 Assumes R is the only relation symbol in the head of 
rules.

 Structures proof as an induction – doesn’t really need 
to be

 Need to deal with constants and repeated variables in 
the goal: :- R(y, 5, w, y).
 Create expression FR to handle these constraints 
 {x1, x2, x3, x4 | x1 = x4  x2 = 5  FQ}

 Construct an expression E(x1, x2, …, xk) for facts in 
DB plus each rule and ‘or’ them together to get FQ
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Safe Datalog contained in allowable 
domain dalculus
DB case: E is just R(x1, x2, …, xk)
Rule Case: R(…) :- R1(…), R2(…), R3(…).
 Introduce “zi” for all variables in the body but not in 

head
 Introduce R1(…)^R2(…)^R3(…) to represent the 

body of the rule
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3. Prove allowable domain calculus is 
contained in relational algebra

In order to construct a relational algebra 
expression, you need to build some useful 
relations – to be used as input to relational 
algebra operators – based on what is present 
in the domain calculus expression.
We need to be able to create constant relations to 

handle constants in domain calculus
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Proving Allowable Domain Calculus is 
contained in Relational Algebra
 Induction on the number of logical connectors in the 

allowed domain calculus formula Q =
{x1, x2, … , xn | F(x1, x2, … , xn) }

 F uses minimal set of logical connectors (, , )
 We can construct a relational expression RelDom(F) 

that returns a one-attribute relation with all the 
values that a variable in Q can take on
 Suppose F mentions R(A, B, C) and S(C, D) plus constants 

17 and 23
 Then RelDom(F) =

A(R)  B(R)  C(R)  C(S)  D(S)  {<17>, <23>}

 RelDom(F)i is cross product of i copies of RelDom: relation 
with all possible i-tuples.
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Sketch of rest of the proof
Base case: zero logical connectors.  Then F is just one 

relation predicate.  The algebra expression is  …(σ…R) to 
accommodate any constants or repeated variables in
R(x1, …, xn) and to account for R having more variables 
than the desired query answer.

Induction: Based on structure of F 
F1  F2: …(E1  RelDom(F1)n-m)   …(E2  RelDom(F2)n-k)
F1: RelDom(F)n – E1

x (F1): …(E1)


