Principles of Databaess

Implications of FDs and IDs

Haven't discussed how infinite relations affect implication

- Examples have all been finite sets of tuples
- Hasn't mattered for combinations of dependencies seen so far

It does make a difference when dealing with FDs and IDs together

= Unit 2, Part 3 — David Maier — David Maier

Principles of Databaess

SAT

Go back to implication as containment of sets of instances

SAT(M, R) = all instances over scheme R that satisfy all dependencies in M R will usually be understood, so we write SAT(M)

Have: M implies dependency d if and only if $SAT(M) \subseteq SAT(\{d\})$

Unit 2, Part 3 David Maier

1

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

Principles of Databaess

Finite Implication

Let FSAT(M) = all <u>finite</u> instances that satisfy all dependencies in M

Definition: M finitely implies dependency d if $FSAT(M) \subseteq FSAT(\{d\})$.

Can have "finitely implies" without (regular) "implies"
But not vice versa

= Unit 2, Part 3 — David Maier — David Maier

Principles of Databaess

First, a Fact

If r is finite and r satisfies $A \rightarrow B$, then the number of distinct A-values in r is greater or equal to the number of distinct B-values.

$$|r[A]| \ge |r[B]|$$

<u> </u>	<u>B</u>
a1	b1
a2	b2
a3	b1

Unit 2, Part 3 David Maier

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

David Maier & Lois Delcambre

Principles of Databaess

Finite Implication without Implication

Relation r(AB)

$$M = \{A \rightarrow B, r[A] \subseteq r[B]\}$$

 $d = r[B] \subseteq r[A]$

Part 1. Assume r is finite

Since A
$$\rightarrow$$
 B, then $|r[A]| \ge |r[B]|$
Since $r[A] \subseteq r[B]$, $|r[A]| \le |r[B]|$

Thus,
$$r[B] \subseteq r[A]$$

Principles of Databaess

= Unit 2, Part 3 =

Part 2. Allow r to be infinite

Here is a relation instance that satisfies $\{A \rightarrow B, r[A] \subseteq r[B]\}$, but not $r[B] \subseteq r[A]$

A		<u>B</u>
1		0
2		1
3		2
i		i-1
	•••	

= Unit 2, Part 3 =

= David Maier =

© 2002, 2004, 2006, 2008, 2011, 2014,

2016

Principles of Databaess

What Gives?

It is hard to express "r is finite" in normal logic

Thus generally hard to define FSAT[M] and reason about finite implication

Finite implication is often undecidable

Unit 2, Part 3 David Maier

Principles of Databaess

Null Values

Used to represent missing information At least two kinds

<u>dne</u> — does not exist

<u>unk</u> — value exists but unknown

PILOT	FLIGHT	DATE	TIME
Cushing	615	50ct	unk
dne	704	60ct	5:50a
Cook	dne	dne	dne

= Unit 2, Part 3 — David Maier — David Maier

4

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

Principles of Databaess

"Does Not Exist" Null

Like adding an additional value to domain of an attribute

So it enlarges the set of possible relation instances

Unit 2, Part 3 David Maier

Principles of Databaess

Issue: dne = dne?

Maybe no: $LD \rightarrow P$

PILOTFLIGHTDATETIMECookdnednedneCadizdnednedne

Maybe yes: FIRST MI LAST \rightarrow AGE

FIRST MI LAST AGE
Alex dne Cook 37
Alex dne Cook 39

= Unit 2, Part 3 — David Maier — 10

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

David Maier & Lois Delcambre

Principles of Databaess

Unknown Null

More like variables

Can view an instance with **unk** nulls as a set of possible fully-defined instances

PILOT	FLIGHT	DATE	TIME
Cushing	615	50ct	unk
Cook	704	60ct	5:50a
Cushing	unk	60ct	unk

Unit 2, Part 3 David Maier

= Principles of Databaess

Some Possible Instances

PILOT	FLIGHT	DATE	TIME
Cushing	615	50ct	5:00p
Cook	704	60ct	5:50a
Cushing	872	60ct	11:00p

PILOT	FLIGHT	DATE	TIME
Cushing	615	50ct	6:00p
Cook	704	60ct	5:50a
Cushing	615	60ct	6:00p

= Unit 2, Part 3 — David Maier — David Maier

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

12

Principles of Databaess Also, "No-Information" and "Inconsistent" $x \sqsubseteq y$: y more informative than x $ni \sqsubseteq unk \sqsubseteq v_i \sqsubseteq inc$ ni ⊑ dne ⊑ inc dne unk

Principles of Databaess

Unit 2, Part 3

Extend Order to Tuples

Use ⊆ on each component

 $\langle Fred, unk, 6 \rangle \subseteq \langle Fred, 10.25, 6 \rangle$ <Fred, unk, 6> \subseteq <Fred, unk, 6> $\langle ni, dne, 6 \rangle \subseteq \langle unk, inc, 6 \rangle$ $\langle ni, dne, 6 \rangle \subseteq \langle inc, inc, inc \rangle$

Unit 2, Part 3 David Maier

> © 2002, 2004, 2006, 2008, 2011, 2014, 2016

> > **David Maier & Lois Delcambre**

14

Principles of Databaess

Extending to Relations

Concentrate on unk null

ord1(Person Price Amt)
Fred unk 6
Fred 10.25 unk
Fritz unk unk

ord2(<u>Person Price Amt</u>) Fred 11.50 6 unk 10.25 7

ord3(<u>Person Price Amt</u>)
Fred 11.50 6
Fred 10.25 7
Fritz 12.25 7

Unit 2, Part 3

์ 15

David Maier

Principles of Databaess

What Does a Tuple Mean?

For partial relations r, q, what should $r \sqsubseteq q$ require?

For tuple t in r

- exactly one s in q with $t \subseteq s$?
- at least one s in q with t \sqsubseteq s?

For tuples t1, t2 in r, can there be a single s in q with t1 \sqsubseteq s and t2 \sqsubseteq s?

Can there be s in q where there is no t in r such that $t \sqsubseteq s$?

Unit 2, Part 3 — David Maier — David Maier

16

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

D 11 D 6 11

Book's Definition

"Fill in the blanks"

Principles of Databaess

 $r \sqsubseteq q$ means there is a total, onto map θ from r to q where for every tuple t in r

$$\dagger \sqsubseteq \theta(\dagger)$$

Principles of Databaess

= Unit 2, Part 3 — David Maier — David Maier

Examples

ord1 (\underline{Person} \underline{Price} \underline{Amt}) ord3 (\underline{Person} \underline{Price} \underline{Amt})

Fred unk 6 \longrightarrow Fred 11.50 6

Fred 10.25 unk \longrightarrow Fred 10.25 7

Fritz unk unk \longrightarrow Fritz 12.25 7

ord1(<u>Person Price Amt</u>) ord4(<u>Person Price Amt</u>)

Fred unk 6 Fred 10.25 6

Fred 10.25 unk

Fritz unk unk

= Unit 2, Part 3 — David Maier — David Maier

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

18

17

David Maier & Lois Delcambre

But Consider

ord2 (
$$\underline{\text{Person Price Amt}}$$
) ord3 ($\underline{\text{Person Price Amt}}$)

Fred 11.50 6

unk 10.25 7 Fred 10.25 7

? Fritz 12.25 7

— Unit 2, Part 3 — David Maier — 19

Principles of Databaess

Principles of Databaess

Possible Worlds

View a partial relation as specifying a set of possible worlds POSS(r) = $\{q \mid r \sqsubseteq q \text{ and } q \text{ is fully defined}\}$

Can include constraints C POSS(r, C) = $\{q \mid q \text{ in POSS(r) and } q \text{ in SAT(C)}\}\$

= Unit 2, Part 3 — David Maier — 20

10

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

Principles of Databaess

What Happens if We Have Constraints?

Recall

PILOT	FLIGHT	DATE	TIME
Cushing	615	50ct	unk
Cook	704	60ct	5:50a
Cushing	unk	60ct	unk

Unit 2, Part 3 — David Maier — David Maier

Principles of Databaess

Not All Satisfy the FDs

$$F = \{L \rightarrow T, PDT \rightarrow L, LD \rightarrow P\}$$

PILOT FLIGHT		DATE	TIME
Cushing	615	50ct	
Cook	704	60ct	5:50a
Cushing		60ct	

PILOT	FLIGHT	DATE	TIME
Cushing	615	50ct	
Cook	704	60ct	5:50a
Cushing		60ct	

= Unit 2, Part 3 — David Maier — David Maier

11

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

22

Use FD-Chase on Instances with Unknowns

PILOT FLIGHT DATE TIME Cushing 704 50ct **unk** Cook 704 60ct 5:50a Cushing unk 60ct unk

PILOT FLIGHT DATE TIME Cushing 704 50ct 5:50a 704 60ct 5:50a Cook Cushing unk 60ct unk

POSS(r, F) = POSS(r', F)

23 = Unit 2, Part 3

Principles of Databaess

Principles of Databaess

Querying Relations with Unknowns

Let r be a relation with unknowns, and Q a query on full relations Would like Q' on partial relations Q'(r) represents $\{Q(q) \mid q \text{ in POSS}(r)\}$

When r is fully defined, would like Q'(r) and Q(r) to agree. (Faithful)

> 24 = Unit 2, Part 3 = David Maier

> > © 2002, 2004, 2006, 2008, 2011, 2014, 2016

Relational Algebra

One approach: Multi-relation

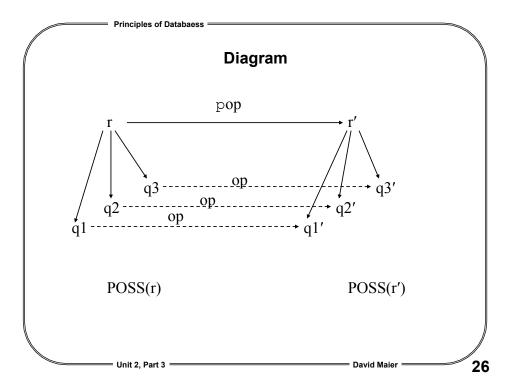
Let pop be partial-relation version of

operator op $p\pi$ and π

Principles of Databaess

 $POSS(pop(r)) = {op(q) | q in POSS(r)}$

= Unit 2, Part 3 — David Maier — 25



© 2002, 2004, 2006, 2008, 2011, 2014, 2016

Principles of Databaess **Sometimes Exists** r PILOT FLIGHT DATE TIME Cushing 615 50ct **unk** 60ct 5:50a 704 Cook Cushing unk 60ct unk $p\pi_{DT}(r)$ DATE TIME 50ct unk 60ct 5:50a 60ct unk = Unit 2, Part 3 = = David Maier 27

 Principles of Databaess **Not Always** $\sigma_{L=872}(r)$ PILOT FLIGHT DATE TIME Cushing 615 50ct 5:00p 704 60ct 5:50a Cook Cushing 872 60ct 11:00p ans(r1)PILOT FLIGHT DATE TIME Cushing 872 60ct 11:00p 28 = Unit 2, Part 3 = = David Maier =

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

Principles of Databaess **Not Always** $\sigma_{L=872}(r)$ PILOT FLIGHT DATE TIME 50ct 5:00p Cushing 615 Cook 704 60ct 5:50a Cushing 615 60ct 5:00p ans(r2)PILOT FLIGHT DATE TIME Ø = Unit 2, Part 3 = 29

Selection Conditions

$$t.B = 6$$

 $\begin{array}{ccc} \underline{A} & \underline{B} \\ < & \text{Fred 6>} & \text{true} \\ < & \text{Fred 4>} & \text{false} \\ < & \text{Fred unk>} & \text{maybe} \end{array}$

Principles of Databaess

3-valued logic

<u>T</u>	F	<u>M</u>
Τ	Т	Т
Τ	F	Μ
Τ	M	Μ
 	T	T T

= Unit 2, Part 3 — David Maier — David Maier

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

30

Principles of Databaess

Example

$$t.A = Fritz$$
 or $t.B = 6$

$$= M$$

$$=$$
 T

31

= Unit 2, Part 3 — David Maier — David Maier —

= Principles of Databaess

But

$$t.B < 6 \text{ or } t.B \ge 6$$
 $t1 \qquad M \qquad \text{or} \qquad M = M$

But it would be T for any value for unk

= Unit 2, Part 3 — David Maier — David Maier

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

32

David Maier & Lois Delcambre