Principles of Databaess

Implications of FDs and IDs

Haven't discussed how infinite relations affect implication

- Examples have all been finite sets of tuples
- Hasn't mattered for combinations of dependencies seen so far

It does make a difference when dealing with FDs and IDs together

nit 2. Part 3

Principles of Databaess

SAT

Go back to implication as containment of sets of instances

SAT(M, R) = all instances over scheme R that satisfy all dependencies in M R will usually be understood, so we write SAT(M)

Have: M implies dependency d if and only if $SAT(M) \subset SAT(\{d\})$

Unit 2, Part 3 — David Maier — David Maier

1

Principles of Databaess

Finite Implication

Let FSAT(M) = all <u>finite</u> instances that satisfy all dependencies in M

Definition: M *finitely implies* dependency d if $FSAT(M) \subseteq FSAT(\{d\})$.

Can have "finitely implies" without (regular) "implies"
But not vice versa

it 2, Part 3 — David Maier — David Maier

Principles of Databaess

First, a Fact

If r is finite and r satisfies $A \rightarrow B$, then the number of distinct A-values in r is greater or equal to the number of distinct B-values.

$$|r[A]| \ge |r[B]|$$

<u> </u>	<u>B</u>
a1	b1
a2	b2
a3	b1

Unit 2. Part 3 — David Maier — David Maier

Finite Implication without Implication

Relation r(AB) $M = \{A \rightarrow B, r[A] \subseteq r[B]\}$ $d = r[B] \subseteq r[A]$ Part 1. Assume r is finite

Since $A \rightarrow B$, then $|r[A]| \ge |r[B]|$ Since $r[A] \subseteq r[B]$, $|r[A]| \le |r[B]|$ So, |r[A]| = |r[B]| and the inclusion must be an equality: r[A] = r[B]Thus, $r[B] \subseteq r[A]$

Principles of Databaess

Part 2. Allow r to be infinite

Here is a relation instance that satisfies {A \rightarrow B, r[A] \subseteq r[B]}, but not r[B] \subseteq r[A]

\[\frac{A}{2} \]

\[\frac{A}{3} \]

\[\frac{B}{3} \]

\[\frac{1}{3} \]

\[\frac{1}{3} \]

...

i i-1

...

David Maier

6

Principles of Databaess

What Gives?

It is hard to express "r is finite" in normal logic

Thus generally hard to define FSAT[M] and reason about finite implication

Finite implication is often undecidable

Unit 2, Part 3 — David Maier — David Maier

Principles of Databaess

Null Values

Used to represent missing information

At least two kinds

 $\underline{\mathsf{dne}} - \mathsf{does} \ \mathsf{not} \ \mathsf{exist}$

unk — value exists but unknown

PILOT	FLIGHT	DATE	TIME
Cushing	615	50ct	unk
dne	704	60ct	5:50a
Cook	dne	dne	dne

Unit 2, Part 3 David Maier

4

Principles of Databaess ———

"Does Not Exist" Null

Like adding an additional value to domain of an attribute

So it enlarges the set of possible relation instances

Unit 2, Part 3 — David Maier — David Maier

Principles of Databaess

Issue: dne = dne?

Maybe no: LD \rightarrow P

PILOTFLIGHTDATETIMECookdnednedneCadizdnednedne

Maybe yes: FIRST MI LAST \rightarrow AGE

FIRST MI LAST AGE
Alex dne Cook 37
Alex dne Cook 39

= Unit 2, Part 3 — David Maier — 10

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

David Maier & Lois Delcambre

Principles of Databaess

Unknown Null

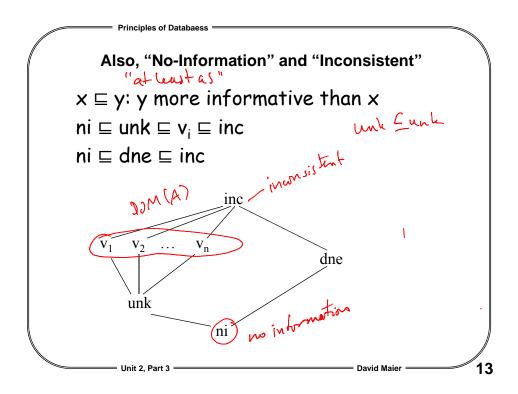
More like variables

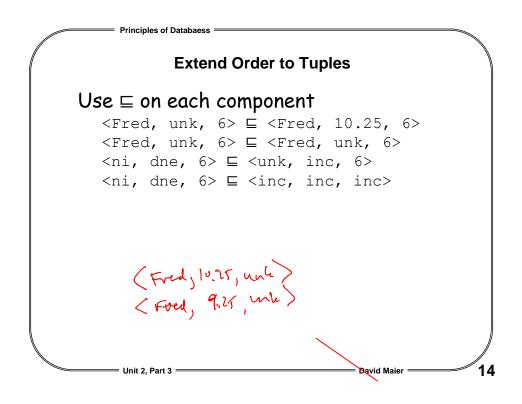
Can view an instance with **unk** nulls as a set of possible fully-defined instances

PILOT	FLIGHT	DATE	TIME
Cushing	615	50ct	unk
Cook	704	60ct	5:50a
Cushino	unk	60ct	unk

Unit 2, Part 3 — David Maier — David Maier

rinciples of Databaess


Some Possible Instances


PILOT	FLIGHT	DATE	TIME
Cushing	615	50ct	5:00p
Cook	704	60ct	5:50a
Cushing	872	60ct	11:00p

PILOT	FLIGHT	DATE	TIME
Cushing	615	50ct	6:00p
Cook	704	60ct	5:50a
Cushing	615	60ct	6:00p
			7:00 p

FAT

= Unit 2, Part 3 — David Maier — 12

Extending to Relations

Concentrate on unk null

ord1 (Person Price Amt)
Fred unk 6
Fred 10.25 unk
Fritz unk unk

ord2 (Person Price Amt)
Fred 11.50 6
unk 10.25 7

ord3 (Person Price Amt)
Fred 11.50 6
Fred 11.50 6
Fred 10.25 7
Fritz 12.25 7

Principles of Databaess

= Unit 2, Part 3 =

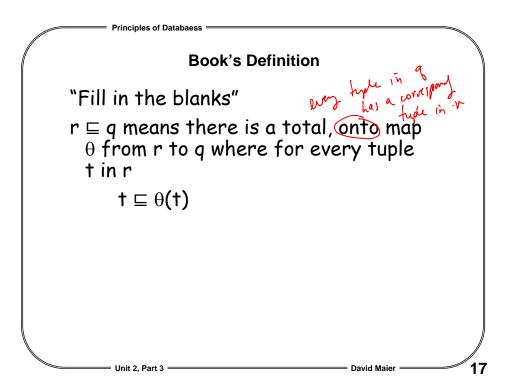
What Does a Tuple Mean?

For partial relations r, q, what should $r \sqsubseteq q$ require?

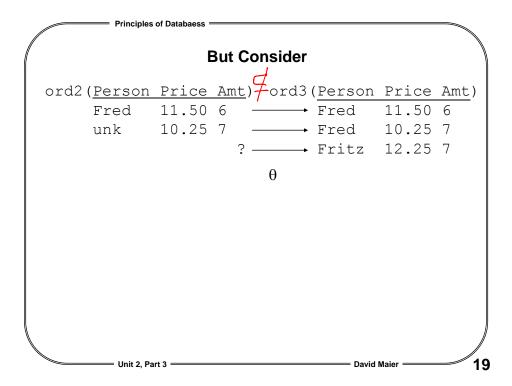
For tuple t in r

- exactly one s in q with $t \sqsubseteq s$?
- at least one s in q with $t \sqsubseteq s$?

For tuples t1, t2 in r, can there be a single s in q with t1 \sqsubseteq s and t2 \sqsubseteq s?


Can there be s in q where there is no t in r such that $t \sqsubseteq s$?

= Unit 2, Part 3 — David Maier — David Maier

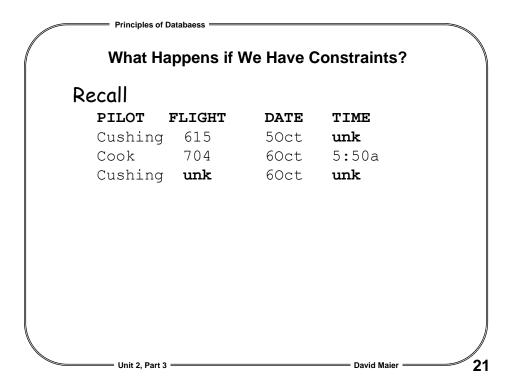

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

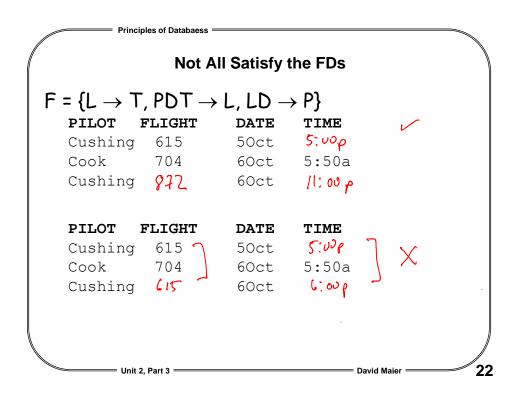
16

8

Possible Worlds

View a partial relation as specifying a set of possible worlds $POSS(r) = \{q \mid r \sqsubseteq q \text{ and } q \text{ is fully defined}\}$


Can include constraints C POSS(r, C) = $\{q \mid q \text{ in POSS(r) and } q \text{ in SAT(C)}\}\$


nit 2, Part 3 — David Maier — 20

© 2002, 2004, 2006, 2008, 2011, 2014, 2016

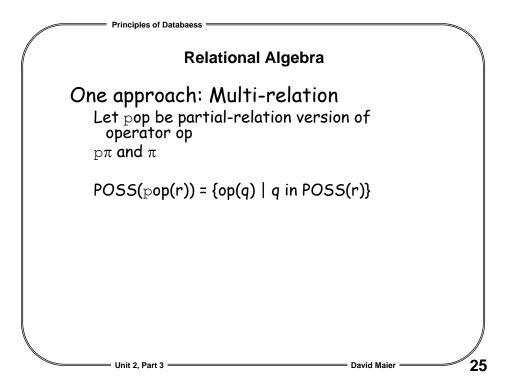
David Maier & Lois Delcambre

10

PILOT	FLIGHT	DATE	TIME
Cushing	704	50ct	unk
Cook	704	60ct	5:50a
Cushing	unk	60ct	unk
•			
PILOT	FLIGHT	DATE	TIME
Cushing	704	50ct	5:50a
Cook	704	60ct	5:50a
Cushing	unk	60ct	unk
OSS(r, F	$1 = \frac{1}{2} O S^{\alpha}$	5(r' F)	

Principles of Databaes

Querying Relations with Unknowns


Let r be a relation with unknowns, and Q a query on full relations


Would like Q' on partial relations Q'(r) represents $\{Q(q) \mid q \text{ in POSS}(r)\}$

When r is fully defined, would like Q'(r) and Q(r) to agree. (Faithful)

it 2, Part 3 — David Maier —

aier **24**


```
Principles of Databaess
              Sometimes Exists
   PILOT
           FLIGHT
                       DATE
                                TIME
   Cushing
             615
                       50ct
                                unk
             704
                                5:50a
   Cook
                       60ct
   Cushing unk
                       60ct
                               unk
p\pi_{DT}(r)
   DATE
           TIME
   50ct
           unk
   60ct
          5:50a
   60ct
           unk
                                                 27
```

```
Principles of Databaess
                   Not Always
\sigma_{L=872}(r)
                     rle Possh)
r \sqsubseteq r1
   PILOT
             FLIGHT
                          DATE
                                   TIME
                                5:00p
   Cushing 615
                          50ct
   Cook
               704
                          60ct
                                   5:50a
   Cushing 872
                                  11:00p
                          60ct
ans(r1)
   PILOT
             FLIGHT
                          DATE
                                   TIME
   Cushing 872
                          60ct
                                  11:00p
                                                      28
     = Unit 2, Part 3 =

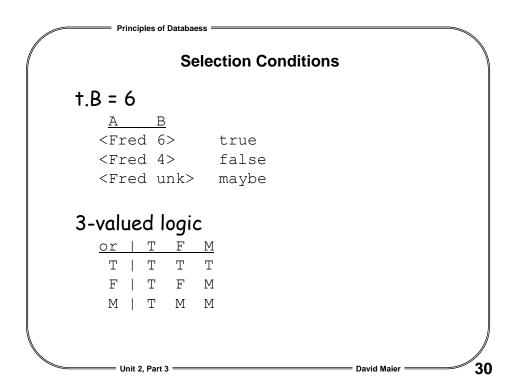
    David Maier
```

Not Always

$$\sigma_{L=872}(r)$$

$$r \sqsubseteq r2$$

$$PILOT FLIGHT DATE TIME$$


$$Cushing 615 50ct 5:00p$$

$$Cook 704 60ct 5:50a$$

$$Cushing 615 60ct 5:00p$$

$$Cushing 615 TIME$$

$$Oushing 615$$

$$\frac{A}{\text{t1}}$$
 < Fred unk>

t2

Principles of Databaess

$$t.A = Fritz$$
 or $t.B = 6$
 $t1$ F or $M = M$

or

Τ

Unit 2, Part 3 — David Maier — David Maier

Μ

= T

Principles of Databaess

But

$$t.B < 6 \text{ or } t.B \ge 6$$
 $t1 \qquad M \qquad \text{or} \qquad M = M$

But it would be T for any value for unk

= Unit 2, Part 3 — David Maier — 32