
Special Lecture, CS 589, Spring 2016

1

Why Database Languages are 
Simpler than Turing Complete

David Maier
Maseeh Professor of Emerging Technologies 

Portland State University
Shaw Visiting Professor 

National University of Singapore

Why this Talk?

Alan Mathison Turing

b. 23 June 1912
Mathematician

Logician

Cryptanalyst

Computer Scientist

5/18/2016 David Maier, Simpler than Turing Complete 2

2012 The Alan Turing Year 
A Centenary Celebration of the Life and 
Works of Alan Turing 

Computer Society of India



Special Lecture, CS 589, Spring 2016

2

How I Chose my Grad School

The paper that defined Turing Machines!
Proc. Lond. Math. Soc. (2) 42 pp 230-265 (1936).

5/18/2016 David Maier, Simpler than Turing Complete 3

Why this Topic?

Alan M. Turing - Simplification in Intelligent 
Computing Theory and Algorithms

• Turing defined a standard for 
computational expressiveness

• But database languages don’t come up to 
that standard – they’re simpler

Why?

5/18/2016 David Maier, Simpler than Turing Complete 4



Special Lecture, CS 589, Spring 2016

3

Turing Computable

Realizable by a Turing Machine (TM)

Turing Complete computation model:
Can express any function a TM can

5/18/2016 David Maier, Simpler than Turing Complete 5

Church-Turing Thesis
Effectively calculable = Turing computable

Turing Machines
Lambda Calculus

General μ-Recursive Functions
Semi-Thue Systems

Post Tag Systems
Type 0 Languages
Combinatory Logic

HTML + CSS
Minecraft

Magic – The Gathering
Game of Life

Two rocks and an infinite roll of toilet paper
…

5/18/2016 David Maier, Simpler than Turing Complete 6



Special Lecture, CS 589, Spring 2016

4

… And Just About Every PL
Pascal, Smalltalk-80, LISP, Forth, APL, 
Algol-60, Fortran, COBOL, Java, PHP, 
Python, Erlang, Haskell, ML, PL/I, 360 
Assembler, BCPL, C, C++, C#, Objective 
C, Perl, SNOBOL, Prolog, Ruby, Scheme, 
Logo, BASIC, Modula-2, Ada, New S, R, 
Matlab, Simula, Eiffel, Occam, …
But why not database languages?

SQL, Quel, QBE, FQL, …
5/18/2016 David Maier, Simpler than Turing Complete 7

First, Consider a Very Simple 
Language: Regular Expressions

REs can express families of strings
Binary Numbers: 1(0*1)*0* + 0
1011, 111, 0, 1000, but not 00, 0001

Not Turing Complete by a long shot
(How is this even a function?)
(Think of it mapping String to Boolean.)

5/18/2016 David Maier, Simpler than Turing Complete 8



Special Lecture, CS 589, Spring 2016

5

Has a Corresponding Computer
Finite State Machines (FSMs)

 Can automatically translate to FSMs from 
regular expressions

 Always halt (on finite inputs)
 Efficient: Constant work per input symbol

5/18/2016 David Maier, Simpler than Turing Complete 9

0

1

1

0
10

Many Nice Properties

Can decide if an RE expresses all strings 
over an alphabet
Can decide if two REs have a string in 
common
Can decide if two REs express the same 
set of strings

(None of these are possible for Turing 
Complete models.)

5/18/2016 David Maier, Simpler than Turing Complete 10



Special Lecture, CS 589, Spring 2016

6

Can Minimize FSMs
Always a unique 
equivalent FSM 
with fewest states

5/18/2016 David Maier, Simpler than Turing Complete 11

0

1

1

0
10

0

1

0,1

Succinct Over Its Domain

REs are declarative: what, not how
Most PLs take much more space to 

express the same function (unless they 
have REs built in)

But there are things you can’t express
Strings of the form (b:c) where b < c
(100:1011)

5/18/2016 David Maier, Simpler than Turing Complete 12



Special Lecture, CS 589, Spring 2016

7

Similar for Data Languages

Declarative, but translatable to 
procedural model
Finite answers on finite input
Can decide equivalence (for subsets)
Can optimize (find faster, equivalent 
programs)

Ease of expression, efficiency over limited 
domain

5/18/2016 David Maier, Simpler than Turing Complete 13

Relational Model (E. F. Codd)

Tables
stalls(Name    Loc Number  Certif)

Roxy    Lagoon    48     ‘B’
Hougang Lagoon    33     ‘A’
Mamu Bedok 24     ‘B’

serves(Name    Dish   Price)
Roxy    Laksa $4.00
Roxy    Otah $0.75
Hougang Otah $0.50

5/18/2016 David Maier, Simpler than Turing Complete 14



Special Lecture, CS 589, Spring 2016

8

Relational Query Languages
Basically First-Order Logic

Which stalls serve both laksa and otah?
Tuple Calculus (Note: shorthand form)
{t.Name | tstalls  sserves  userves 

t.Name = s.Name  t.Name = u.Name 
s.Dish = ‘laksa’  u.Dish = ‘otah’}

SQL
select st.Name
from stalls st, serves sv1, serves sv2
where st.Name = sv1.Name and
st.Name = sv2.Name and sv1.Dish = ‘laksa’  
and sv2.Dish = ‘otah’

5/18/2016 David Maier, Simpler than Turing Complete 15

Computer: Relational Algebra

Small set of operations on relations
 SELECT: subset of rows
 PROJECT: subset of columns
 JOIN: combine on equal values
 UNION, INTERSECT, DIFFERENCE
 DIVISION: “for all”

Each one is finite in, finite out. Thus any 
composition has this property.

5/18/2016 David Maier, Simpler than Turing Complete 16



Special Lecture, CS 589, Spring 2016

9

Can Translate Relational Queries
{t.Name | tstalls  sserves  userves 
t.Name = s.Name  t.Name = u.Name 
s.Dish = ‘laksa’  u.Dish = ‘otah’}

5/18/2016 David Maier, Simpler than Turing Complete 17

Stalls Serves

ServesJoinName

JoinName

Selectlaksa,otah

ProjectName

Containment, Identity

Can decide if one query always returns a 
subset of another

For SELECT, PROJECT, JOIN, UNION
Containment both ways: Equivalence

Have algebraic identities
Can analyze all combinations of operators
UNION(JOIN(r, s), JOIN(r, u)) =

JOIN(r, UNION(s, u))

5/18/2016 David Maier, Simpler than Turing Complete 18



Special Lecture, CS 589, Spring 2016

10

Query Optimization
Explore equivalent expressions to 
minimize expected evaluation time

As opposed to minimizing expression size

5/18/2016 David Maier, Simpler than Turing Complete 19

Stalls Serves

ServesJoinName

JoinName

Selectlaksa,otah

ProjectName

Stalls

Serves

Serves

JoinName

JoinName

Selectotah

ProjectName

Selectlaksa

Parsimony of Expression

Wouldn’t use SQL to do weather 
simulation

But it can express succinctly much of 
what you want to do with bulk 
processing of data
And has properties not shared by general-
purpose programming languages

5/18/2016 David Maier, Simpler than Turing Complete 20



Special Lecture, CS 589, Spring 2016

11

Extensions Beyond FOL

Aggregation: SUM, COUNT, AVERAGE
Duplicates: multiset operators
Nested queries

Most of the framework stays intact
 Add or modify a few algebraic operators
 Algebraic identities might change

5/18/2016 David Maier, Simpler than Turing Complete 21

But, Too Simple for Recursion

It was noted early on that standard 
relational languages couldn’t express 
certain queries.
For example, transitive closure of a graph
No general iteration structure – looping is 
encapsulated in operators

5/18/2016 David Maier, Simpler than Turing Complete 22



Special Lecture, CS 589, Spring 2016

12

Example Recursive Queries
better(stall1, stall2, dish)

5/18/2016 David Maier, Simpler than Turing Complete 23

Cycle Dominates

Danger!

Can easily lose finiteness
combo(Roxy, [laksa,otah], $4.75)

serves(Roxy, otah, $0.75)


combo(Roxy, [laksa,otah,otah],

$5.50)

5/18/2016 David Maier, Simpler than Turing Complete 24



Special Lecture, CS 589, Spring 2016

13

How to Proceed?
Limit recursion by data: 

finite data gives finite computation
Traversal recursion: data gives call 
structure
TMax(leaf(V)) = V

TMax(node(L,R)) = max(TMax(L),TMax(R)) 

Safety: Values in results come from the 
database (or the query)
Only a finite number of ways to combine

5/18/2016 David Maier, Simpler than Turing Complete 25

Datalog

Simplified Prolog: no function symbols
Alternative execution strategies

{t.Name | tstalls  sserves  userves 
t.Name = s.Name  t.Name = u.Name 
s.Dish = ‘laksa’  u.Dish = ‘otah’}

result(N) :-
stalls(N, L1, S1, C1),
serves(N, laksa, P2),
serves(N, otah, P3).

5/18/2016 David Maier, Simpler than Turing Complete 26



Special Lecture, CS 589, Spring 2016

14

Generate Answers from Instances
result(N) :-

stalls(N, L1, S1, C1),
serves(N, laksa, P2),
serves(N, otah, P3).

result(roxy) :-
stalls(roxy, lagoon, 48, ‘B’),
serves(roxy, laksa, 4.00),
serves(roxy, otah, 0.75).

result(hougang) :-
stalls(hougang, lagoon, 33, ‘A’),
serves(hougang, laksa, *),
serves(hougang, otah, 0.50).

5/18/2016 David Maier, Simpler than Turing Complete 27

Recursion via Self-Reference

chain(S1,S2,D) :- better(S1,S2,D).

chain(S1,S3,D) :- chain(S1,S2,D),

better(S2,S3,D).

cycle(S) :- chain(S,S,D).

dominates(S1,S2) :- chain(S1,S2,D1),

¬chain(S2,S1,D2).

5/18/2016 David Maier, Simpler than Turing Complete 28



Special Lecture, CS 589, Spring 2016

15

Evaluation:
Generate Till No Change
better(Stall1, Stall2, Dish)

roxy hougang otah
hougang mamu otah
mamu roxy laksa

chain(roxy, hougang, otah) :-
better(roxy, hougang, otah).

chain(mamu, roxy, laksa) :-
better(mamu, roxy, laksa).

chain(roxy, mamu, otah) :-
chain(roxy, hougang , otah),
better(hougang, mamu, otah).

5/18/2016 David Maier, Simpler than Turing Complete 29

Retain Many Properties
Optimization opportunities
roxyBetter(S) :- chain(roxy,S,D).

chain(roxy,S3,D) :-
chain(roxy,S2,D),          
better(S1,S2,D).

Alternative evaluation strategies
 Semi-Naïve
 Extension tables
 Query-Subquery

5/18/2016 David Maier, Simpler than Turing Complete 30



Special Lecture, CS 589, Spring 2016

16

Did We Lose Anything?

Not for Monotone programs:
Bigger database  Bigger answer

Apply rules in any order until no change
 Always get the same result
 Minimum model = least fixpoint

5/18/2016 David Maier, Simpler than Turing Complete 31

Negation Isn’t Monotone
Evaluation is order dependent
chain(roxy, hougang, otah) :-

better(roxy, hougang, otah).
chain(mamu, roxy, laksa) :-

better(mamu, roxy, laksa).
dominates(mamu, roxy) :-

chain(mamu, roxy, laksa),

¬chain(roxy, mamu, *).
chain(roxy, mamu, otah) :-

chain(roxy, hougang , otah),
better(hougang, mamu, otah).

5/18/2016 David Maier, Simpler than Turing Complete 32



Special Lecture, CS 589, Spring 2016

17

How to Handle Negation

Restrict to stratified programs
 No recursion through negation
 Fully evaluate recursive relation before 

negating it
 Stable model: analog of minimum model

Need similar care with aggregation
So, we have lost something because of 

added expressiveness
5/18/2016 David Maier, Simpler than Turing Complete 33

Datalog Sounds Wonderful

So why did it disappear in the 90’s …
Ullman: Not many large-scale recursive apps
Vardi: Entrenched orthodoxy of RDBMS
Aref: Hostile system types, 

limited implementations
Hellerstein: Dry mode of discourse
Ramakrishan: No unserved killer instances
Abiteboul: What, Datalog went away?

5/18/2016 David Maier, Simpler than Turing Complete 34



Special Lecture, CS 589, Spring 2016

18

Limited Recursion in SQL

Oracle CONNECTS TO clause for 
hierarchical data

WITH clause for linear recursion
with chain(stall1,stall2,dish) as
(select * from better
union all
select c.stall1, b.stall2, b.dish
from chain c, better b
where c.stall2 = b.stall1 and

c.dish = b.dish)

5/18/2016 David Maier, Simpler than Turing Complete 35

Recent Resurgence

In research:
 BOOM project at Berkeley – avoiding 

coordination in distributed protocols
 Webdam at INRIA – formal foundations of 

interacting web applications
 Data exchange – IBM, U Pennsylvania
 Program analysis: DOOP, Codequest, PQL

5/18/2016 David Maier, Simpler than Turing Complete 36



Special Lecture, CS 589, Spring 2016

19

And in Companies

Lixto: Web extraction of pricing data
Semmle: Software analytics
LogicBlox: Big Data apps for enterprises
Datomic: Temporal data service
DLVSYSTEM: Knowledge-intensive apps

Many use it as an “internal” language

5/18/2016 David Maier, Simpler than Turing Complete 37

To Conclude

Turing Completeness is still the 
benchmark for expressiveness …
… but sometimes being simpler has its 
advantages.

To investigate further:
 Bently on “Little Languages”
 Domain-specific languages (DSLs)

5/18/2016 David Maier, Simpler than Turing Complete 38



Special Lecture, CS 589, Spring 2016

20

Questions? Enigmas?

5/18/2016 David Maier, Simpler than Turing Complete 39


