Special Lecture, CS 589, Spring 2016

° Why Database Languages are
Simpler than Turing Complete

David Maier

Maseeh Professor of Emerging Technologies
Portland State University

Shaw Visiting Professor
National University of Singapore

Portland State NUS

National University
UNIVERSITY

of Singapore

Why this Talk?

2012 The Alan Turing Year
A Centenary Celebration of the Life and
Works of Alan Turing

Computer Society of India

Alan Mathison Turing
b. 23 June 1912

Mathematician
Logician
Cryptanalyst
Computer Scientist

5/18/2016 David Maier, Simpler than Turing Complete

Special Lecture, CS 589, Spring 2016

How I Chose my Grad School

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurixG.

The Graduate College,
Princeton University,
New Jersey, U.S.A.

The paper that defined Turing Machines!
Proc. Lond. Math. Soc. (2) 42 pp 230-265 (1936).

5/18/2016 David Maier, Simpler than Turing Complete 3

: Why this Topic?

Alan M. Turing - Simplification in Intelligent
Computing Theory and Algorithms

 Turing defined a standard for
computational expressiveness

e But database languages don’t come up to
that standard — they’re simpler

Why?

5/18/2016 David Maier, Simpler than Turing Complete 4

Special Lecture, CS 589, Spring 2016

Turing Computable

Realizable by a Turing Machine (TM)

MEMORY DIl
- A%

Turing Complete computation model:
Can express any function a TM can

5/18/2016 David Maier, Simpler than Turing Complete 5

Church-Turing Thesis

Effectively calculable = Turing computable
Turing Machines
Lambda Calculus
General p-Recursive Functions
Semi-Thue Systems

Post Tag Systems

Type 0 Languages
Combinatory Logic

5/18/2016 David Maier, Simpler than Turing Complete 6

Special Lecture, CS 589, Spring 2016

... And Just About Every PL

Pascal, Smalltalk-80, LISP, Forth, APL,
Algol-60, Fortran, COBOL, Java, PHP,
Python, Erlang, Haskell, ML, PL/I, 360
Assembler, BCPL, C, C++, C#, Objective
C, Perl, SNOBOL, Prolog, Ruby, Scheme,
Logo, BASIC, Modula-2, Ada, New S, R,
Matlab, Simula, Eiffel, Occam, ...

But why not database languages?
SOL, Quel, QBE, FOL, ...

5/18/2016 David Maier, Simpler than Turing Complete 7

First, Consider a Very Simple
Language: Regular Expressions

REs can express families of strings
Binary Numbers: 1(0*1)*0* + O
1011, 111, 0, 1000, but not 00, 0001

Not Turing Complete by a long shot
(How is this even a function?)
(Think of it mapping String to Boolean.)

5/18/2016 David Maier, Simpler than Turing Complete 8

Special Lecture, CS 589, Spring 2016

Has a Corresponding Computer

" Finite State Machines (FSMs)

= Can automatically translate to FSMs from
regular expressions

= Always halt (on finite inputs)
» Efficient: Constant work per input symbol

5/18/2016 David Maier, Simpler than Turing Complete 9

Many Nice Properties

@ Can decide if an RE expresses all strings
over an alphabet

@ Can decide if two REs have a string in
common

Can decide if two REs express the same
set of strings

(None of these are possible for Turing
Complete models.)

5/18/2016 David Maier, Simpler than Turing Complete 10

Special Lecture, CS 589, Spring 2016

Can Minimize FSMs

Always a unique
equivalent FSM
with fewest states

5/18/2016 David Maier, Simpler than Turing Complete 11

Succinct Over Its Domain

REs are declarative: what, not how

Most PLs take much more space to
express the same function (unless they
have REs built in)

But there are things you can't express
Strings of the form (b:c) whereb < ¢
(100:1011)

5/18/2016 David Maier, Simpler than Turing Complete 12

Special Lecture, CS 589, Spring 2016

Similar for Data Languages

@ Declarative, but translatable to
procedural model

@ Finite answers on finite input
@ Can decide equivalence (for subsets)

@ Can optimize (find faster, equivalent
programs)

Ease of expression, efficiency over limited
domain

5/18/2016 David Maier, Simpler than Turing Complete 13

Relational Model (E. F. Codd)

)
Tables
stal Is(Name Loc Number Certif)
Roxy Lagoon 48 ‘B~
Hougang Lagoon 33 “A”
Mamu Bedok 24 “B”
serves(Name Dish Price)

Roxy Laksa $4.00
Roxy Otah $0.75
Hougang Otah $0.50

5/18/2016 David Maier, Simpler than Turing Complete 14

Special Lecture, CS 589, Spring 2016

Relational Query Languages

Basically First-Order Logic
Which stalls serve both laksa and otah?

Tuple Calculus (Note. shorthand form)

{t.Name | testalls A seserves A ueserves a
t.Name = s_Name A t.Name = u.Name A
s.Dish “laksa” A u.Dish = “otah’}

SQL
select st.Name
from stalls st, serves svl, serves sv2

where st.Name = sv1.Name and
st.Name = sv2.Name and svl1.Dish = “laksa
and sv2.Dish = “otah”’

5/18/2016 David Maier, Simpler than Turing Complete 15

Computer: Relational Algebra

Small set of operations on relations
= SELECT: subset of rows
= PROJECT: subset of columns
= JOIN: combine on equal values
= UNION, INTERSECT, DIFFERENCE
= DIVISION: “for all”
Each one is finite in, finite out. Thus any
composition has this property.

5/18/2016 David Maier, Simpler than Turing Complete 16

Special Lecture, CS 589, Spring 2016

Can Translate Relational Queries

{t.Name | testalls A seserves A ueserves s
t.Name = s_Name A t_Name = u.Name A
s.Dish = “laksa” A u.Dish = “otah’}

5/18/2016 David Maier, Simpler than Turing Complete 17

Containment, Identity

Can decide if one query always returns a
subset of another
For SELECT, PROJECT, JOIN, UNION
Containment both ways: Equivalence
Have algebraic identities
Can analyze all combinations of operators

UNION(JIOIN(r, s), JOIN(r, u)) =
JOIN(r, UNION(s, u))

5/18/2016 David Maier, Simpler than Turing Complete 18

Special Lecture, CS 589, Spring 2016

Query Optimization

I" Explore equivalent expressions to
minimize expected evaluation time
As opposed to minimizing expression size

s

5/18/2016 David Maier, Simpler than Turing Complete 19

Parsimony of Expression

Wouldn't use SQL to do weather
simulation

But it can express succinctly much of
what you want to do with bulk
processing of data

And has properties not shared by general-
purpose programming languages

5/18/2016 David Maier, Simpler than Turing Complete 20

10

Special Lecture, CS 589, Spring 2016

Extensions Beyond FOL

@ Aggregation: SUM, COUNT, AVERAGE
@ Duplicates: multiset operators
@ Nested queries

Most of the framework stays intact
= Add or modify a few algebraic operators
» Algebraic identities might change

5/18/2016 David Maier, Simpler than Turing Complete 21

But, Too Simple for Recursion

It was noted early on that standard
relational languages couldn’t express
certain queries.

For example, transitive closure of a graph

No general iteration structure — looping is
encapsulated in operators

5/18/2016 David Maier, Simpler than Turing Complete 22

11

Special Lecture, CS 589, Spring 2016

Example Recursive Queries
better(stalll, stall2, dish)

Cycle Dominates

5/18/2016 David Maier, Simpler than Turing Complete 23

Danger!

Can easily lose finiteness
combo(Roxy, [laksa,otah], $4.75)
serves(Roxy, otah, $0.75)

—

combo(Roxy, [laksa,otah,otah],
$5.50)

5/18/2016 David Maier, Simpler than Turing Complete 24

12

Special Lecture, CS 589, Spring 2016

How to Proceed?

Limit recursion by data:
finite data gives finite computation

® Traversal recursion: data gives call
structure
TMax(leaf(V)) =V
TMax(node(L,R)) = max(TMax(L),TMax(R))
@ Safety: Values in results come from the
database (or the query)

Only a finite number of ways to combine

5/18/2016 David Maier, Simpler than Turing Complete 25

Datalog

Simplified Prolog: no function symbols

Alternative execution strategies

{t.Name | testalls A seserves A ueserves s
t.Name = s_Name A t_.Name = u.Name A
s.Dish = “laksa” A u.Dish = “otah’}

result(N) :-
stalls(N, L1, S1, Cl1),
serves(N, laksa, P2),
serves(N, otah, P3).

5/18/2016 David Maier, Simpler than Turing Complete 26

13

Special Lecture, CS 589, Spring 2016

Generate Answers from Instances

result(N) :-
stalls(N, L1, S1, C1),
serves(N, laksa, P2),
serves(N, otah, P3).

result(roxy) :-
stalls(roxy, lagoon, 48, “B”),
serves(roxy, laksa, 4.00),
serves(roxy, otah, 0.75).

stalls(hougané, lagoon, 33, “A%),

serves(hougang: otah,,0-56)-

5/18/2016 David Maier, Simpler than Turing Complete 27

Recursion via Self-Reference

chain(S1,S2,D) :- better(S1,S2,D).
chain(S1,S3,D) :- chain(S1,S2,D),
better(S2,S3,D).

cycle(S) :- chain(s,S,D).

dominates(S1,S2) :- chain(S1,S2,D1),
-chain(52,51,D2).

5/18/2016 David Maier, Simpler than Turing Complete 28

14

Special Lecture, CS 589, Spring 2016

Evaluation:
Generate Till No Change

better(Stalll, Stall2, Dish)

roxy hougang otah
hougang mamu otah
mamu roxy laksa

chain(roxy, hougang, otah) :-
better(roxy, hougang, otah).

chain(mamu, roxy, laksa) :-
better(mamu, roxy, laksa).

chain(roxy, mamu, otah) :-
chain(roxy, hougang , otah),

better(hougang, mamu, otah).

5/18/2016 David Maier, Simpler than Turing Complete 29

‘Retain Many Properties

@ Optimization opportunities
roxyBetter(S) :- chain(roxy,S,D).
chain(roxy,S3,D) :-

chain(roxy,S2,D),
better(S1,52,D).

@ Alternative evaluation strategies
= Semi-Naive
= Extension tables
= Query-Subquery

5/18/2016 David Maier, Simpler than Turing Complete 30

15

Special Lecture, CS 589, Spring 2016

Did We Lose Anything?

Not for Monotone programs:
Bigger database = Bigger answer

Apply rules in any order until no change
= Always get the same result
= Minimum model = least fixpoint

5/18/2016 David Maier, Simpler than Turing Complete 31

‘Negation Isnt Monotone

Evaluation is order dependent
chain(roxy, hougang, otah) :-
better(roxy, hougang, otah).
chain(mamu, roxy, laksa) :-
better(mamu, roxy, laksa).
dominates(mamu, roxy) :-
chain(mamu, roxy, laksa),
-~chain(roxy, mamu, *).
chain(roxy, mamu, otah) :-
chain(roxy, hougang , otah),
better(hougang, mamu, otah).

5/18/2016 David Maier, Simpler than Turing Complete 32

16

Special Lecture, CS 589, Spring 2016

How to Handle Negation

Restrict to stratified programs
= No recursion through negation
» Fully evaluate recursive relation before
negating it
» Stable model: analog of minimum model
Need similar care with aggregation

So, we have lost something because of
added expressiveness

5/18/2016 David Maier, Simpler than Turing Complete 33

Datalog Sounds Wonderful

So why did it disappear in the 90’s ...
Ullman: Not many /arge-scale recursive apps
Vardi: Entrenched orthodoxy of RDBMS

Aref: Hostile system types,
limited implementations

Hellerstein: Dry mode of discourse
Ramakrishan: No unserved killer instances
Abiteboul: What, Datalog went away?

5/18/2016 David Maier, Simpler than Turing Complete 34

17

Special Lecture, CS 589, Spring 2016

Limited Recursion in SQL

@ Oracle CONNECTS TO clause for
hierarchical data

®WITH clause for linear recursion
with chain(stalll,stall2,dish) as
(select * from better

union all

select c.stalll, b.stall2, b.dish
from chain c, better b

where c.stall2 = b_.stalll and
c.dish = b.dish)

5/18/2016 David Maier, Simpler than Turing Complete 35

Recent Resurgence

In research:

= BOOM project at Berkeley — avoiding
coordination in distributed protocols

= Webdam at INRIA - formal foundations of
interacting web applications

= Data exchange — IBM, U Pennsylvania
= Program analysis: DOOP, Codequest, PQL

5/18/2016 David Maier, Simpler than Turing Complete 36

18

Special Lecture, CS 589, Spring 2016

And in Companies

@ Lixto: Web extraction of pricing data

@ Semmle: Software analytics

@ LogicBlox: Big Data apps for enterprises
@ Datomic: Temporal data service

#® DLVSYSTEM: Knowledge-intensive apps

III

Many use it as an “internal” language

5/18/2016 David Maier, Simpler than Turing Complete 37

To Conclude

Turing Completeness is still the
benchmark for expressiveness ...

... but sometimes being simpler has its
advantages.

To investigate further:
= Bently on "Little Languages”
= Domain-specific languages (DSLs)

5/18/2016 David Maier, Simpler than Turing Complete 38

19

Special Lecture, CS 589, Spring 2016

5/18/2016

Questions? Enigmas?

David Maier, Simpler than Turing Complete

39

20

