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How I Chose my Grad School

The paper that defined Turing Machines!
Proc. Lond. Math. Soc. (2) 42 pp 230-265 (1936).
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Why this Topic?

Alan M. Turing - Simplification in Intelligent 
Computing Theory and Algorithms

• Turing defined a standard for 
computational expressiveness

• But database languages don’t come up to 
that standard – they’re simpler

Why?
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Turing Computable

Realizable by a Turing Machine (TM)

Turing Complete computation model:
Can express any function a TM can
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Church-Turing Thesis
Effectively calculable = Turing computable

Turing Machines
Lambda Calculus

General μ-Recursive Functions
Semi-Thue Systems

Post Tag Systems
Type 0 Languages
Combinatory Logic

HTML + CSS
Minecraft

Magic – The Gathering
Game of Life

Two rocks and an infinite roll of toilet paper
…
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… And Just About Every PL
Pascal, Smalltalk-80, LISP, Forth, APL, 
Algol-60, Fortran, COBOL, Java, PHP, 
Python, Erlang, Haskell, ML, PL/I, 360 
Assembler, BCPL, C, C++, C#, Objective 
C, Perl, SNOBOL, Prolog, Ruby, Scheme, 
Logo, BASIC, Modula-2, Ada, New S, R, 
Matlab, Simula, Eiffel, Occam, …
But why not database languages?

SQL, Quel, QBE, FQL, …
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First, Consider a Very Simple 
Language: Regular Expressions

REs can express families of strings
Binary Numbers: 1(0*1)*0* + 0
1011, 111, 0, 1000, but not 00, 0001

Not Turing Complete by a long shot
(How is this even a function?)
(Think of it mapping String to Boolean.)
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Has a Corresponding Computer
Finite State Machines (FSMs)

 Can automatically translate to FSMs from 
regular expressions

 Always halt (on finite inputs)
 Efficient: Constant work per input symbol
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Many Nice Properties

Can decide if an RE expresses all strings 
over an alphabet
Can decide if two REs have a string in 
common
Can decide if two REs express the same 
set of strings

(None of these are possible for Turing 
Complete models.)
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Can Minimize FSMs
Always a unique 
equivalent FSM 
with fewest states
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Succinct Over Its Domain

REs are declarative: what, not how
Most PLs take much more space to 

express the same function (unless they 
have REs built in)

But there are things you can’t express
Strings of the form (b:c) where b < c
(100:1011)
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Similar for Data Languages

Declarative, but translatable to 
procedural model
Finite answers on finite input
Can decide equivalence (for subsets)
Can optimize (find faster, equivalent 
programs)

Ease of expression, efficiency over limited 
domain
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Relational Model (E. F. Codd)

Tables
stalls(Name    Loc Number  Certif)

Roxy    Lagoon    48     ‘B’
Hougang Lagoon    33     ‘A’
Mamu Bedok 24     ‘B’

serves(Name    Dish   Price)
Roxy    Laksa $4.00
Roxy    Otah $0.75
Hougang Otah $0.50
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Relational Query Languages
Basically First-Order Logic

Which stalls serve both laksa and otah?
Tuple Calculus (Note: shorthand form)
{t.Name | tstalls  sserves  userves 

t.Name = s.Name  t.Name = u.Name 
s.Dish = ‘laksa’  u.Dish = ‘otah’}

SQL
select st.Name
from stalls st, serves sv1, serves sv2
where st.Name = sv1.Name and
st.Name = sv2.Name and sv1.Dish = ‘laksa’  
and sv2.Dish = ‘otah’

5/18/2016 David Maier, Simpler than Turing Complete 15

Computer: Relational Algebra

Small set of operations on relations
 SELECT: subset of rows
 PROJECT: subset of columns
 JOIN: combine on equal values
 UNION, INTERSECT, DIFFERENCE
 DIVISION: “for all”

Each one is finite in, finite out. Thus any 
composition has this property.
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Can Translate Relational Queries
{t.Name | tstalls  sserves  userves 
t.Name = s.Name  t.Name = u.Name 
s.Dish = ‘laksa’  u.Dish = ‘otah’}
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Stalls Serves

ServesJoinName

JoinName

Selectlaksa,otah

ProjectName

Containment, Identity

Can decide if one query always returns a 
subset of another

For SELECT, PROJECT, JOIN, UNION
Containment both ways: Equivalence

Have algebraic identities
Can analyze all combinations of operators
UNION(JOIN(r, s), JOIN(r, u)) =

JOIN(r, UNION(s, u))
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Query Optimization
Explore equivalent expressions to 
minimize expected evaluation time

As opposed to minimizing expression size
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Stalls Serves

ServesJoinName

JoinName

Selectlaksa,otah

ProjectName

Stalls

Serves

Serves

JoinName

JoinName

Selectotah

ProjectName

Selectlaksa

Parsimony of Expression

Wouldn’t use SQL to do weather 
simulation

But it can express succinctly much of 
what you want to do with bulk 
processing of data
And has properties not shared by general-
purpose programming languages
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Extensions Beyond FOL

Aggregation: SUM, COUNT, AVERAGE
Duplicates: multiset operators
Nested queries

Most of the framework stays intact
 Add or modify a few algebraic operators
 Algebraic identities might change
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But, Too Simple for Recursion

It was noted early on that standard 
relational languages couldn’t express 
certain queries.
For example, transitive closure of a graph
No general iteration structure – looping is 
encapsulated in operators
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Example Recursive Queries
better(stall1, stall2, dish)
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Cycle Dominates

Danger!

Can easily lose finiteness
combo(Roxy, [laksa,otah], $4.75)

serves(Roxy, otah, $0.75)


combo(Roxy, [laksa,otah,otah],

$5.50)
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How to Proceed?
Limit recursion by data: 

finite data gives finite computation
Traversal recursion: data gives call 
structure
TMax(leaf(V)) = V

TMax(node(L,R)) = max(TMax(L),TMax(R)) 

Safety: Values in results come from the 
database (or the query)
Only a finite number of ways to combine
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Datalog

Simplified Prolog: no function symbols
Alternative execution strategies

{t.Name | tstalls  sserves  userves 
t.Name = s.Name  t.Name = u.Name 
s.Dish = ‘laksa’  u.Dish = ‘otah’}

result(N) :-
stalls(N, L1, S1, C1),
serves(N, laksa, P2),
serves(N, otah, P3).
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Generate Answers from Instances
result(N) :-

stalls(N, L1, S1, C1),
serves(N, laksa, P2),
serves(N, otah, P3).

result(roxy) :-
stalls(roxy, lagoon, 48, ‘B’),
serves(roxy, laksa, 4.00),
serves(roxy, otah, 0.75).

result(hougang) :-
stalls(hougang, lagoon, 33, ‘A’),
serves(hougang, laksa, *),
serves(hougang, otah, 0.50).
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Recursion via Self-Reference

chain(S1,S2,D) :- better(S1,S2,D).

chain(S1,S3,D) :- chain(S1,S2,D),

better(S2,S3,D).

cycle(S) :- chain(S,S,D).

dominates(S1,S2) :- chain(S1,S2,D1),

¬chain(S2,S1,D2).
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Evaluation:
Generate Till No Change
better(Stall1, Stall2, Dish)

roxy hougang otah
hougang mamu otah
mamu roxy laksa

chain(roxy, hougang, otah) :-
better(roxy, hougang, otah).

chain(mamu, roxy, laksa) :-
better(mamu, roxy, laksa).

chain(roxy, mamu, otah) :-
chain(roxy, hougang , otah),
better(hougang, mamu, otah).
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Retain Many Properties
Optimization opportunities
roxyBetter(S) :- chain(roxy,S,D).

chain(roxy,S3,D) :-
chain(roxy,S2,D),          
better(S1,S2,D).

Alternative evaluation strategies
 Semi-Naïve
 Extension tables
 Query-Subquery
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Did We Lose Anything?

Not for Monotone programs:
Bigger database  Bigger answer

Apply rules in any order until no change
 Always get the same result
 Minimum model = least fixpoint
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Negation Isn’t Monotone
Evaluation is order dependent
chain(roxy, hougang, otah) :-

better(roxy, hougang, otah).
chain(mamu, roxy, laksa) :-

better(mamu, roxy, laksa).
dominates(mamu, roxy) :-

chain(mamu, roxy, laksa),

¬chain(roxy, mamu, *).
chain(roxy, mamu, otah) :-

chain(roxy, hougang , otah),
better(hougang, mamu, otah).
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How to Handle Negation

Restrict to stratified programs
 No recursion through negation
 Fully evaluate recursive relation before 

negating it
 Stable model: analog of minimum model

Need similar care with aggregation
So, we have lost something because of 

added expressiveness
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Datalog Sounds Wonderful

So why did it disappear in the 90’s …
Ullman: Not many large-scale recursive apps
Vardi: Entrenched orthodoxy of RDBMS
Aref: Hostile system types, 

limited implementations
Hellerstein: Dry mode of discourse
Ramakrishan: No unserved killer instances
Abiteboul: What, Datalog went away?
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Limited Recursion in SQL

Oracle CONNECTS TO clause for 
hierarchical data

WITH clause for linear recursion
with chain(stall1,stall2,dish) as
(select * from better
union all
select c.stall1, b.stall2, b.dish
from chain c, better b
where c.stall2 = b.stall1 and

c.dish = b.dish)
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Recent Resurgence

In research:
 BOOM project at Berkeley – avoiding 

coordination in distributed protocols
 Webdam at INRIA – formal foundations of 

interacting web applications
 Data exchange – IBM, U Pennsylvania
 Program analysis: DOOP, Codequest, PQL
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And in Companies

Lixto: Web extraction of pricing data
Semmle: Software analytics
LogicBlox: Big Data apps for enterprises
Datomic: Temporal data service
DLVSYSTEM: Knowledge-intensive apps

Many use it as an “internal” language
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To Conclude

Turing Completeness is still the 
benchmark for expressiveness …
… but sometimes being simpler has its 
advantages.

To investigate further:
 Bently on “Little Languages”
 Domain-specific languages (DSLs)
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Questions? Enigmas?
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